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Abstract: In this paper we introduce a connected topology T on the set N of positive integers whose base consists of all
arithmetic progressions connected in Golomb’s topology. It turns out that all arithmetic progressions which are
connected in the topology T form a basis for Golomb’s topology. Further we examine connectedness of arithmetic
progressions in the division topology T′ on N which was defined by Rizza in 1993. Immediate consequences of
these studies are results concerning local connectedness of the topological spaces (N,T) and (N,T′).
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1. Preliminaries

The letters Z,N and N0 denote the sets of integers, positive integers, and non-negative integers, respectively. For eachset A we use clA to denote its closure. The symbol Θ(a) denotes the set of all prime factors of a ∈ N. For all a, b ∈ N,we use (a, b) and lcm(a, b) to denote the greatest common divisor of a and b and the least common multiple of a and b,respectively. Moreover, for all a, b ∈ N, {an+b} and {an} stand for the infinite arithmetic progressions
{an+b}

df= a · N0 + b and {an}
df= a · N.

For basic results and notions concerning topology and number theory we refer the reader to the monographs of Engel-king [3] and LeVeque [7], respectively.
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2. Introduction

In 1955 Furstenberg [4] defined the base of a topology TF on Z by means of all arithmetic progressions and gave anelegant topological proof of the infinitude of primes. In 1959 Golomb [5] presented a similar proof of the infinitude ofprimes using a topology D on N with the base BG = {{an+b} : (a, b) = 1} defined in 1953 by Brown [2]. Ten yearslater Kirch [6] defined a topology D′ on N, weaker than Golomb’s topology D, with the base BK = {{an+b} : (a, b) = 1,
b < a, a is square-free}. Both topologies D and D′ are Hausdorff, the set N is connected in these topologies and locallyconnected in the topology D′, but it is not locally connected in the topology D, see [5, 6]. Recently the author showedthat the arithmetic progression {an+b} is connected in Golomb’s topology D if and only if Θ(a) ⊂ Θ(b) [9, Theorem 3.3].Moreover it was proved that all arithmetic progressions are connected in Kirch’s topology D′ [9, Theorem 3.5].In 1993 Rizza [8] introduced the division topology T′ on the set N0 of non-negative integers as follows: for X ⊂ N0 heput

g(X ) = clX = ⋃
x∈X

D(x), where D(x) = {y ∈ N0 : y | x}.
The mapping g defines a topology T′ on N0. Rizza showed that the division topology T′ is a T0-topology and it is nota T1-topology. Moreover, the topological space (N0,T′) is compact and connected [8, Propositions 2–4]. It is easy tosee that T′ is the right topology of the set N0 ordered by division, see e.g. [3, p. 81], and the family {a ·N0 : a ∈ N0} isa basis for this topology.In this paper we introduce a connected topology T on the set N of positive integers whose base consists of all arithmeticprogressions connected in Golomb’s topology D. It turns out that the topology T is not locally connected, but all arith-metic progressions which are connected in the topology T form a basis for Golomb’s topology. Further, we characterizeconnectedness of arithmetic progressions in the division topology T′ restricted to the set N. An immediate consequenceof this characterization is local connectedness of the space (N,T′).
3. A new topology and its properties

Take as a basis B for a topology T on N all arithmetic progressions which are connected in Golomb’s topology D, i.e.
B = {{an+b} : Θ(a) ⊂ Θ(b)}. (1)

Indeed, for each a ∈ N there is an arithmetic progression {an+a} = {an} ∈ B such that a ∈ {an}. Now let usfix progressions {a1n+b1}, {a2n+b1} ∈ B and choose arbitrary x ∈ {a1n+b1} ∩ {a2n+b2}. Let c = lcm(a1, a2).Since Θ(a1) ⊂ Θ(b1), Θ(a2) ⊂ Θ(b2) and x ∈ {a1n+b1}∩{a2n+b2}, Θ(a1)∪Θ(a2) ⊂ Θ(x), whence Θ(c) ⊂ Θ(x). Thusthere is an arithmetic progression {cn+ x} ∈ B such that x ∈ {cn+ x}. Moreover, we can easily see that
{cn+ x} ⊂ {a1n+b1} ∩ {a2n+b2}.

So, B forms a basis for the topology T on N. Observe that every nonempty open set, being a union of basis arithmeticprogressions, must be infinite. Now we will show some properties of the topological space (N,T).
Proposition 3.1.
Every nonempty T-closed set in N contains the element 1.

Proof. Let F be a T-closed nonempty set. Then U = N \ F is T-open and U 6= N. If 1 ∈ U , then by (1) there werean arithmetic progression {an+b} ∈ B such that Θ(a) ⊂ Θ(b) and 1 ∈ {an+b} ⊂ U . Therefore b = 1 and a = 1,a contradiction. So, 1 ∈ F .
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Connections between connected topological spaces on the set of positive integers

Proposition 3.2.
The topological space (N,T) is connected and compact.

Proof. By Proposition 3.1 we cannot find two nonempty closed sets having empty intersection. So, (N,T) is connected.Since every nonempty T-closed set contains 1, the intersection of every centered system of T-closed sets is nonempty,see [1, Definition 6, p. 11; Proposition 2, p. 57]. Therefore (N,T) is compact.
Proposition 3.3.
T is a T0-topology and it is not a T1-topology.

Proof. First we will show that T is a T0-topology. Fix x, y ∈ N with x 6= y. If x = 1, then there is an arithmeticprogression {yn} ∈ B such that 1 /∈ {yn}. Clearly {yn} is T-open and y ∈ {yn}. So, let x 6= 1. There is k ∈ N suchthat xk > y. Hence there is an arithmetic progression {xkn+ x} ∈ B such that x ∈ {xkn+ x} and y /∈ {xkn+ x}.Now suppose that T is a T1-topology. Let x = 1 and y 6= x. If U is T-open with 1 ∈ U and y /∈ U , then 1 /∈ N \ Uand N \ U is T-closed. By Proposition 3.1, N \ U = ∅, whence U = N. So, y ∈ U , a contradiction.
Theorem 3.4.
The arithmetic progression {an+b} is connected in the topological space (N,T) if and only if (a, b) = 1.

Proof. Let B be the base of the topology T, see (1). Fix a, b ∈ N.
“Only if” part. Assume that (a, b) 6= 1. Then there is a prime number p such that p | a and p | b. We will show that inthis case the arithmetic progression {an+b} is T-disconnected. Since p | a, we obtain

{an+b} ⊂ {pn+b}. (2)
Moreover, Θ(p) = {p} ⊂ Θ(b), whence {pn+b} ∈ B. Choose t ∈ N \ {1} such that pt−1 | a and pt - a. Then for
k ∈ {0, . . . , pt−1 − 1} the progressions {ptn+ (pk +b)} are pairwise disjoint and T-open (as elements of the basis B)and it is easy to check that

{pn+b} = pt−1−1⋃
k=0 {p

tn+ (pk +b)}. (3)
From (2) and (3), we have

{an+b} = {an+b} ∩
pt−1−1⋃
k=0 {p

tn+ (pk +b)} = X ∪ Y ,

where
X = {an+b} ∩ {ptn+b}, Y = pt−1−1⋃

k=1
(
{an+b} ∩ {ptn+ (pk +b)}).

Consequently, the arithmetic progression {an+b} splits into two disjoint sets X and Y which are T-open in {an+b}.Now we will show that both sets X and Y are nonempty. Obviously, the number b ∈ {an+b} ∩ {ptn+b} = X ,whence X is nonempty. Further, by (2), a+ b ∈ {an+b} ⊂ {pn+b}, whence
a+ b ∈ {pn+b} ∩ {an+b}. (4)

Since pt - a, we have a+ b /∈ {ptn+b}. Hence
a+b /∈ {ptn+b} ∩ {an+b} = X. (5)
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From conditions (4) and (5) we obtain a+b ∈ Y , whence Y is nonempty. We thus have proved that if (a, b) 6= 1, thenthe arithmetic progression {an+b} is T-disconnected, as claimed.
“If” part. Now assume that the condition (a, b) = 1 is satisfied. We will prove that the set {an+b} is not
T-disconnected. Assume the contrary: there are two disjoint nonempty sets O1 and O2 which are T-open in {an+b}and such that {an+b} = O1 ∪ O2. Hence there exist two T-open sets U1, U2 such that

O1 = U1 ∩ {an+b} and O2 = U2 ∩ {an+b}.

Suppose that b ∈ O1. (The case b ∈ O2 is analogous.) Then b ∈ U1, whence there is an arithmetic progression
{a1n+b} ∈ B such that Θ(a1) ⊂ Θ(b) and {a1n+b} ⊂ U1.So, since (a, b) = 1, we have (a, a1) = 1. Now we consider two cases.
Case 1: p ∈ O2 for some prime number p ∈ {an+b} such that p > a1. Obviously, p ∈ U2. Hence and since theset U2 is T-open, there is k ∈ N such that {pkn+p} ⊂ U2. From conditions p ∈ {an+b} and (a, b) = 1 we concludethat (p, a) = 1. Therefore (pk , a) = 1 and since p > a1, we have (p, a1) = 1, whence (pk , a1) = 1. Consequently,(pk , aa1) = 1. So, by the Chinese Remainder Theorem,

∅ 6= {an+b} ∩ {a1n+b} ∩ {pkn+p} ⊂ {an+b} ∩ U1 ∩ U2 = O1 ∩ O2,
which contradicts the assumption that O1 ∩ O2 = ∅.
Case 2: p ∈ O1 for each prime number p ∈ {an+b} such that p > a1. Let x ∈ O2. Then x ∈ U2 and, since U2 is
T-open, there is an arithmetic progression {a2n+ x} ∈ B such that

Θ(a2) ⊂ Θ(x) and {a2n+ x} ⊂ U2. (6)
Since x ∈ {an+b} and (a, b) = 1, (a, x) = 1 and, by condition (6), we have (a, a2) = 1. Moreover, by Dirichlet’stheorem (on primes in arithmetic progressions) there is a prime number p ∈ {an+b} such that p > max{a1, a2}.So, p ∈ O1 ⊂ U1. Since the set U1 is T-open, there is k ∈ N such that {pkn+p} ⊂ U1. Obviously (p, a) = 1,whence (pk , a) = 1. Since p > a2, we have (pk , a2) = 1. Consequently (pk , aa2) = 1, and by the Chinese RemainderTheorem,

∅ 6= {an+b} ∩ {pkn+p} ∩ {a2n+ x} ⊂ {an+b} ∩ U1 ∩ U2 = O1 ∩ O2,which contradicts O1 ∩O2 = ∅. So, the assumption that the progression {an+b} may be T-disconnected was false.
Using Theorem 3.4 we can easily see that every base of the topology T contains some disconnected arithmetic progression.Therefore the following corollary holds.
Corollary 3.5.
The topological space (N,T) is not locally connected.

4. The division topology on the set N

Let (N,T′) be a topological subspace of the space (N0,T′), where T′ is the division topology defined by Rizza. Clearly,(N,T′) is compact, connected (every nonempty T′-closed set in N contains the element 1), T0 (but not T1) topologicalspace with the base
B′ = {{an}}. (7)So, every nonempty open set, being a union of basis arithmetic progressions, must be infinite. Moreover, T′ is the righttopology of the set N ordered by division.
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Now we will show that the space (N,T′) is locally connected. To this end we will prove the following theorem.
Theorem 4.1.
Every arithmetic progression {an+b} is connected in the topological space (N,T′).
Proof. Let B′ be the base of the topology T′ on N, see (7). Fix a, b ∈ N. First assume that (a, b) = 1. Since T′ ⊂ T,by Theorem 3.4, the arithmetic progression {an+b} is T′-connected in N. So, we can assume that (a, b) 6= 1.Suppose that the arithmetic progression {an+b} is T′-disconnected, i.e. there are two disjoint nonempty sets O1and O2, T′-open in {an+b} and such that {an+b} = O1 ∪ O2. Then there exist two T′-open sets U1, U2 such that

O1 = U1 ∩ {an+b} and O2 = U2 ∩ {an+b}. (8)
Assume that b ∈ O1. (The case b ∈ O2 is analogous.) Then b ∈ U1 and, since U1 is T′-open, there is an arithmeticprogression {bn} ∈ B′ such that {bn} ⊂ U1. Let (a, b) = d > 1. Then there are relatively prime numbers x, y ∈ Nsuch that a = dx and b = dy. We consider two cases.
Case 1: y = 1. In this case a = bx and since {bxn+b} ⊂ {bn} ⊂ U1, we have by (8),

O1 = U1 ∩ {an+b} = U1 ∩ {bxn+b} = {bxn+b} = {an+b},

which proves that O2 = ∅, a contradiction. So, in this case the assumption that {an+b} with (a, b) 6= 1 may be
T′-disconnected was false.
Case 2: y ∈ N \ {1}. Since O2 6= ∅, there is c ∈ O2 ⊂ U2. Since U2 is T′-open, there is an arithmetic progression
{cn} ∈ B′ such that {cn} ⊂ U2. Moreover, since c ∈ {an+b}, there is n1 ∈ N0 such that c = an1 + b. Now considertwo arithmetic progressions {(xn1 +y)n} and {xn+1}. Observe that {(xn1 +y)n}  N. If there were a prime number pwith p | (xn1 +y) and p | x, we would have had p | y, which contradicts (x, y) = 1. Hence, (xn1 + y, x) = 1. By theChinese Remainder Theorem there is α ∈ {(xn1 +y)n} ∩ {xn+1}, whence there are k1 ∈ N and k2 ∈ N0 such that

α = (xn1 +y)k1 = xk2 + 1. (9)
Put β = ayk2 + b. Clearly,

β ∈ {an+b}, (10)
β = dxyk2 + b = bxk2 + b = b(xk2 +1) ∈ {bn} ⊂ U1. (11)

Moreover, by (11) and (9),
β = b(xk2 +1) = b(xn1 +y)k1 = dyxn1k1 + dy2k1 = (an1 +b)k1y = ck1y ∈ {cn} ⊂ U2 (12)

So, by (10)–(12) and (8) we have
β ∈ {an+b} ∩ U1 ∩ U2 = O1 ∩ O2,

which contradicts the assumption that O1 ∩ O2 = ∅. So, the progression {an+b} with (a, b) 6= 1 is T′-connectedin N.
An immediate consequence of Theorem 4.1 is the following corollary.
Corollary 4.2.
The topological space (N,T′) is locally connected.

880

Brought to you by | Uniwersytet Kazimierza Wielkiego Bydgoszcz
Authenticated

Download Date | 9/18/15 2:19 PM



P. Szczuka

5. Comparison of connected topologies on N

One can observe some interesting connections between four topologies considered in this paper. First, when we taketopologies T and T′ we obtain the following relation.
Proposition 5.1.
The topology T is stronger than the division topology T′.

Proof. Since B′ ⊂ B, see (1) and (7), every T′-open set is T-open, too. Now consider the arithmetic progression
{4n+2}, which obviously is an element of the base B. Observe that 2 ∈ {4n+2} and {2n} is the smallest set of thebase B′ containing 2. But {2n} 6⊂ {4n+2}, which proves that T′  T.
Second, the base of Golomb’s topology D consists of all arithmetic progressions that are connected in the topology T,and conversely, all arithmetic progressions connected in T form a basis for D. And finally, the connections betweentopologies T and T′ on N are analogous to the connections between Golomb’s topology D and Kirch’s topology D′,namely, stronger topologies are connected but not locally connected and weaker topologies are both connected andlocally connected.
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