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1. Preliminaries

The letters N, Ny and P denote the sets of positive integers, non-negative integers and primes, respectively. For a set
A we use the symbol clA to denote the closure of A. The symbol ©(a) denotes the set of all prime factors of ¢ € N.
For all a,b € N, we use (a, b) and lcm(a, b) to denote the greatest common divisor of @ and b and the least common
multiple of a and b, respectively. Moreover, for all a,b € N, the symbols {an + b} and {an} stand for the infinite
arithmetic progressions:

{an-}—b}d:fa-No-f—b and {an}ia-N.

Hence, clearly, {an} = {an + a}. For the basic results and notions concerning topology and number theory we refer
the reader to the monographs of Kelley [4] and LeVeque [6], respectively.
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2. Introduction

In 1955 Furstenberg [2] defined the base of a topology on the set of integers by means of all arithmetic progressions
and gave an elegant topological proof of the infinitude of primes. In 1959 Golomb [3] presented a similar proof of
the infinitude of primes using a topology D on N with the base B = {{an + b} : (a,b) = 1} defined in 1953 by
Brown [1]. Ten years later Kirch [5] defined a topology D’ on N, weaker than Golomb’s topology D, with the base
Bk = {{an + b} : (a,b) =1, a is square-free}. Both topologies D and D’ are Hausdorff, the set N is connected in
these topologies and locally connected in the topology D’, but it is not locally connected in the topology D (see [3, 5]).
Moreover, the set N is semireqular in the stronger topology D and it is not semireqular in the weaker topology D’
(see [10)).

In 1993 Rizza [7] introduced the division topology J” on N as follows: for X C N he put

gX)=cX = UD(X), where D(x) = {y € N:y|x}.

xeX

The mapping g forms a topology 7’ on N. It is easy to see that the family B’ = {{an}} is a basis for this topology.
In [9] the author defined the common division topology T on N, stronger than the division topology J”, with the base
B = {{an + b} : B(a) C ©(b)}. Both topologies T and T" are Ty and they are not T, the set N is connected in
these topologies and locally connected in the topology 77, but it is not locally connected in the topology T (see [7, 9]).
Moreover, the set N is semiregular in the stronger topology T and it is not semireqular in the weaker topology 7’
(see [10]).

Since 2010 the author has examined properties of arithmetic progressions in the above four topologies. It was already
shown that the base of Golomb’s topology D consists of all arithmetic progressions that are connected in the common
division topology T, and conversely, all arithmetic progressions connected in T form a basis for D (see [9]). More-
over, it turned out that all arithmetic progressions are connected in topologies D’ and J” (see [8, Theorem 3.5] and
[9, Theorem 4.1], respectively). Recently the author gave a characterization of reqular open arithmetic progressions in
these topologies (see [10]).

In this paper we continue studies concerning properties of arithmetic progressions, namely, we characterize closures
of arithmetic progressions in the common division topology 7 on N. From now on we will only deal with the common
division topology and to simplify the notation the symbol T will be omitted.

3. Main results

We start with two simple technical lemmas.

Lemma 3.1.
Assume that U is an open set. If c € U, then there is an arithmetic progression {an + ¢} € B such that {an + ¢} C U.

Proof. Letc € U. Since the set U is open, there is an arithmetic progression {an+b} € B such thatc € {an+b} C
U and ©(a) C ©(b). So, {an + ¢} c {an + b} C U and B(a) C O(c). This implies that {an + ¢} € B. O

Lemma 3.2.
If by = b (mod a), then cl{an + b} = cl{an + b1}.

Proof. Without loss of generality we can assume that by < b. Since {an + b} C {an + b1}, we have cl{an + b} C
cl{an + b1}. So, it is sufficient to show the opposite implication.

Let x € cl{an+b,}. Fix an open set U with x € U. By Lemma 3.1, there is a basic arithmetic progression {cn+x} C U.
Since {cn + x} contains x and it is open, {cn+x} N {an+ by} #+ @. Taking into account that a nonempty intersection of
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two infinite arithmetic progressions is an infinite arithmetic progression, we can conclude that the set {cn+x}N{an+b}
is infinite. Simultaneously, the set {an + b1}\ {an + b} is finite, which implies

g+ {an+byn{cn+x} C{an+b}nU.

This proves that x € cl{an + b}. O

The proof of next remark is evident.

Remark 3.3.
cl{n + b} = N for each b € N.

From now on in all theorems of this paper we assume a > 1.

Theorem 3.4.
Assume p € P, k € N and by < p*. If by = b (mod p¥), then cl{p*n + b} = {p*n + b1} U (N\ {pn}). In particular,
() the arithmetic progression {2n + 1} is closed,
(i) cl{pn} =N for each p € P, and
(itt) if the arithmetic progression {pn + b} is open, then cl{pn + b} = N for each p € P.

Proof. First we will show that cl{p*n + b} C {p*n + b1} U (N\{pn}). Using the assumptions by < p* and
by = b (mod p¥), we obtain
{p*n + b} C {p*n+bi} C {pn+bi} UN\{pn}).

If (p, b) = 1, then (p, b1) = 1, too. Hence {p*n + b1} c N\{pn} and the set N\ {pn} = {p*n + b1} U (N\{pn}) is
closed. This proves that cl{p*n+b} C {p*n+b1}U(N\{pn}). So, we can assume p|b. Then, obviously, p|b1, whence
{p*n + b1} C {pn}. Since

k—1

p
P\ n + b1} = ok +ip\{ptn+ b1} = |J {p*n+ip}
= ie{1pk )\ (b1}

and all arithmetic progressions {p*n+ip} are open, the set {p“n+b1} U(N\{pn}) = N\ ({pn}\{p*n +b1}) is closed.
Consequently, cl{p*n + b} C {p*n + b1} U (N\ {pn}).

Now we will show the opposite inclusion. Let x € {p“n + b1} U (N\ {pn}). We consider two cases.

Case 1: x € {p*n + b1}. Since by = b (mod p*¥), by Lemma 3.2, cl{p*n + b} = cl{p*n + b1}. So, x € {p*n + b1} C
cl{p*¥n + b1} = cl{p*n + b}.

Case 2: x € N\{pn} = Uyer. p,-1y{pn +d}. Then x € {pn + d} for some d € {1,...,p —1}. Fix an open set U

such that x € U. By Lemma 3.1, there is an arithmetic progression {cn + x} € B with {cn + x} C U and ©(c) C O(x).
Since x € N\ {pn}, we have (p,x) = 1. So, (p, c) =1, too. Using the Chinese Remainder Theorem (CRT), we obtain

g+ {cn+x}n{pkn+b} c Un{p*n+ b},

whence x € cl{p*n + b}.

Finally, observe that conditions (i) and (it) are evident. Moreover, since the arithmetic progression {pn + b} is open,
we have p = b (mod p). So, cl{pn + b} = {pn} U (N\{pn}) = N, whence condition (iii) holds, too. O
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. __________________________________________________
Theorem 3.5.
Let a = pi'...p* be the prime power factorization of a. Then cl{an + b} = ﬂL c{pin+b}.
Proof. First observe

{an + b} = m{pf"n +b}.

Hence cl{an + b} c N, cl{p{'n + b}.

Now we will show the opposite inclusion. Assume x € ﬂf; cl{pf[n + b}. Then, by Theorem 3.4, x € ﬂL ({pf‘h + b[}
UN\{pin})), where b; = b (mod p{") and b; < p{* for each i € {1,...,k}. Fix an open set U such that x € U. By
Lemma 3.1, there is an arithmetic progression {cn + x} € B with {cn +x} C U. Hence ©(c) C O(x). We consider three
cases.

Case 1: x € ﬂﬁ;{pf"'n + b;}. By CRT, there is exactly one s € N such that 1 <'s < p{"...p{* and

ﬂ{pf"n-i-b,v} ={(p!"...p)n+s} = {an +s}.

Since b; = b (mod p{*) and b; < p{* for each i € {1,...,k}, we have {p{"n+b} C {p{n+ b;} foreach i € {1,...,k}.
Hence

K K
{an + b} = ﬂ{pf"n +b}C ﬂ{pf’h + b} = {an +s}.
i=1 i=1

So, s = b (mod a). By Lemma 3.2, we obtain that cl{an + b} = cl{an +s}. Consequently, x € {an+s} C cl{an+s} =
cl{an + b}.
Case 2: x € (i, (N\{pin}). Since N, (N\{pin}) = N\ UL, {pin}, we have x & ", {pin}. So, (pi,x) =1 for each
ie{1,...,k}. Hence (p;,c) =1 for each i € {1,..., k}, which implies (a, c) = 1. By CRT,

@+ {cn+x}n{an+b} cUn{an+ b}.

Consequently, x € cl{an + b}.

Case 3: There are a number r € {1,...,k — 1} and a permutation {0, ..., 0:} of the set {1,...,k} such that x €
N {pan + bg } NN, .1 (N\{psn}). By CRT, there is exactly one s € N such that 1 < s < pg;' ... ps" and

{pain+bo} = {(po'-..pe)n +s}.
i=1

So,

x € {(por'...p2)n +s}n

N\ U{pm”})~

i=r+1

0p41

Define a; = poy' ... pe" and a; = pot' ... poc. Then (a1, a;) = 1. Moreover, (p,,,x) = 1 for each i € {r +1,...,k}.
Hence (py, ¢) = 1for each i € {r+1,...,k}, which implies (a2, ¢) = 1. Since b, = b (mod p;f’i) and by, < pot for each
ie{1,...,r}, we obtain that {pgfin + b} - {pgfi + bu[} for each i € {1,...,r}. So,

{ain +b} = ﬂ{p?n—i—b} C ﬂ{p;""n—l-bg,-} = {a1n +s}.
i=1 i=1
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Hence
{ain +s}n{an+ b} ={an+ b}. (1

Since x € {a1n+s}, we have {a1n+s}n{cn+x} # @. It is known that nonempty intersection of two infinite arithmetic
progressions is an infinite arithmetic progression. Therefore

{a1n +s}n{cn+x} ={dn+e}, where d = lem(c, aq).
Moreover, if (¢, az) =1 and (a1, a2) =1, then (d, a2) = 1. So, by CRT and condition (1), we obtain
@+ {dn+e}n{an+b} = {an+s}n{cn+x}n{an+b} = {en+x}n{an+b} c Un{an+ b}.
Consequently, x € cl{an + b}. O

Theorem 3.6.
Let a = p{'...p* be the prime power factorization of a. Define

A={l<a:(pi,l)="10rl=b(modp) for eachi € {1,... k}}.

Then cl{an + b} = U,calan + }. In particular, if a is square-free and the arithmetic progression {an + b} is open,
then cl{an + b} =N.

Proof. First assume x € cl{an + b}. By Theorems 3.5 and 3.4, respectively,

k

cl{an + b} = ﬂcl{pf‘n +b} = m({pf"'n + b} U(N\{p:in})),

i=1

where b; = b (mod p{*) and b; < p{® for each i € {1,..., k}. We consider three cases.

Case 1: x € (i, {p{"n + b;}. By CRT, there is exactly one [ € N such that 1 < [ < p{'...p* and

n{pf"n—l—bi} ={(p{"...p)n+ 1} ={an+1}.

Since b; = b (mod p{") and b; < p{" for each i € {1,...,k}, we have {p{in+b} C {p{n+b;} foreachi € {1,..., k}.
Hence

k k
{an + b} = ﬂ{pf‘n +b}C m{pf‘n + b} ={an+1},
i=1 i=1
which proves [ = b (mod a). Consequently, [ = b (mod p{") for each i € {1,...,k}. Since [ < @, we obtain that [ € A,
whence x € |Jca{an + 1}.

Case 2: x € ﬂfﬂ(N\{pm}). Observe

i—1
K K pi—1pi

N\ {pinh) = U U {piin + (pit + d)}.

i=1 i=1 d=1 t=0
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So, for each i € {1,...,k} thereare d; € {1,...,p;—1} and t; € {0, ..., p% " —1} such that x € {p{'n + (p;t; + d;) }.
This implies x € ﬂL 1{p, n+ (piti + d;)}. By CRT, there is exactly one [ € N such that 1 < [ < p{"...p;* and

(]{pl n+(piti+d)} = {(p"-..p)n+1} = {an+1}.

i=1

Moreover, since d; < p; for each i € {1,..., k}, we have (d;, p;) = 1 foreach i € {1,..., k}. Therefore, (p;t;+d;, p;) =1
for each i € {1,...,k} and finally, (£, p;) =1 for each i € {1,..., k}. This proves that [ € A, whence x € |J,c {an +(}.

Case 3: There are a number r € {1,...,k — 1} and a permutation {0y, ..., 0c} of the set {1,...,k} such that x €
N 1{pa”‘n + bo} NN, .1 (N\{pgn}). By CRT, there is exactly one s € N such that 1 < s < po'...ps" and
N {pa'n+bg}={(ps'...ps")n+s}. Moreover,

1

k k pur1pgl -
m (N\{Pm”} m U U {Po n+(Pgt+d)}
i=r+1 i=r+1 d=1 t=0

So, for each i € {r+1,...,k} there are d; € {1,...,ps — 1} and t; € {0,...,p% " — 1} such that x € {ps’n +
(po ti + di)}. Therefore,

x € {(por'-..pg)n+s}n ﬂ{pg"‘nJr(p,,,t +dy)}.

i=r+1

By CRT, there is exactly one z € N such that 1 <z < p o pak and

Or+1
X € {(pzf1 plr)n+s}tn {(p,,fjf. .pgzk)n—i—z}.

Now, using once more CRT we obtain that there is exactly one positive integer [ < a such that x € {an+(}. Additionally,
since (d;, pg;) = 1 for each i € {r+1,...,k}, we have (pyt; + di,ps) = 1 for each i € {r+1,...,k} and finally,
(Po,1 -+ -Pa,2) = 1. So, it is easy to see that

[=s(modps'...p%)  and  (pg,,---Po.l)=1. )

Since b, = b(modps') and b, < ps' for each i € {1,...,r}, we have {ps'n + b} C {pa’n + by} for each
ie{1,...,r} Hence

{(por"...pe=)n+ b} = ﬂ{p ‘n+b} C ﬂ{pa”‘n+bai} = {(por'-..pe ) n + s},

which implies
s=b(modpg...p2r). 3)

or

By conditions (2) and (3), [ = b (mod pg;' ... p5" ), whence [ = b (modpg/') for each i € {1,...,r}. Moreover, by (2),
(Pg., 1) =1 foreach i € {r+1,...,k}. Consequently, | € A, whence x € | J,ca{an + (}. This completes the first part of
the proof.

Now we will show the opposite inclusion. Assume x € | J,caf{an + (}. Then x € {an + [} for some | € A. Observe

k
{on+ 0 ={(p{"...p¢)n+ 1} =("\{pi'n+1}. (4)
i=1
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We will show
{piin+1} cc{piin+b}  foreach ie{1,... k}. (5)

Fix i € {1,...,k}. Condition [ € A implies (p;,{) =1 or [ = b (modp{"). If (p;, 1) =1, then {p{in + [} C N\{pin}.
By Theorem 3.4, N\ {p;n} C cl{p{"n + b}, which proves that {p{'n + (} C cl{p{in + b}. If { = b (modp{"), then by
Lemma 3.2, cl{p{*n + b} = cl{p{"n + t}. Therefore, {p{'n + [} C cl{p{'n + b}, which completes the proof of (5). So,
using (4), (5), and Theorem 3.5 we obtain

k k

x € {an+ 1} = ﬂ{pfin +1}c ﬂcl{pf"'n + b} = cl{an + b}.

i=1 i=1
Finally, observe that if a is square-free, then a = p;...p,. Since
k
{an + b} = (Y{pin + b}
i=1

and {an + b} is open, {p;n+ b} is also open for each i € {1,..., k}. So, Theorem 3.5 and condition (iii) of Theorem 3.4

imply
k

cl{an + b} = ﬂ cl{pin +b} =N

i=1

This completes the proof. O
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