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MAXIMAL CLASSES FOR LOWER AND UPPER
SEMICONTINUOUS STRONG SWIATKOWSKI FUNCTIONS

Abstract. In this paper, we characterize the maximal additive and multiplicative
classes for lower and upper semicontinuous strong Swiatkowski functions and lower and
upper semicontinuous extra strong Swigtkowski functions. Moreover, we characterize the
maximal class with respect to maximums for lower semicontinuous strong Swigtkowski
functions and lower and upper semicontinuous extra strong Swiagtkowski functions.

1. Introduction

We use mostly standard terminology and notation. The letters R and N
denote the real line and the set of positive integers, respectively. The symbols
I(a,b) and I[a,b] denote the open and the closed interval with endpoints a
and b, respectively. For each A < R, we use the symbol X4 to denote the
characteristic function of A.

Let f: I — R, where I is a nondegenerate interval. The symbols C(f),
C*(f), € (f), and A(f) will stand for the set of points of continuity, right-
hand continuity, left-hand continuity of f, and the set of all local maximums
(not necessarily strict) of f, respectively. We say that f is a Darbouz function
(f € D), if it maps connected sets onto connected sets. We say that f is a
strong Swigtkowski function [3] (f € Ss), if whenever o, 8 € I, a < f3, and
y € I(f(«), f(B)), there is an xy € (o, 8) N C(f) such that f(xg) = y. We
say that f is an extra strong Swigtkowski function [7] (f € Ses), if whenever
a,fel, a+# B, and y € I[f(«), f(B)], there is an g € I[a, ] N C(f) such
that f(zg) = y.

Observe that S.; « Ss = D. To prove that the first inclusion is proper
consider the function z — sinz™ '+ 2z + 1 for z > 0 and z — 0 for z < 0. It
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is easy to see that such function belongs to the class 55\365. Moreover, the
function z — sinz~ !+ + 1 for £ > 0 and = — z for < 0 is Darboux and
it has not the strong Swiatkowski property, which proves that the second
inclusion is proper, too.

The symbols C, [sc, and usc denote families of all continuous and lower
and upper semicontinuous functions, respectively. If £ and F are families of
real functions, then we will write L instead of LnF. We say that f € Const
if and only if f[I] is a singleton. Finally,

Const, = {feConst: f>0 on I}

Moreover, for each x € I we write

Tm(f,o") = Tm_ f(1).

t—axt

Similarly, we define the symbols lim(f, ™), lim(f, "), and lim(f, z~).
If £ and £ are families of real functions, then we define:

Mo(£1,L8) ={f: (Vge L) f+ge L},
M (L1, L) ={f: (Vge L1) fge L},
Mpax(£1,L) = {f : (Vg e L£y) max{f, g} € L]}.

Moreover we let
Ma(L) = MG(L,L), Mm(L) = Mm(LaL)y Mmax(L) = Mmax(LaL)-

The above classes are called the maximal additive class for £, the maximal
multiplicative class for £, and the maximal class with respect to maximums
for £, respectively.

REMARK 1.1. Clearly if £'c £ and £} 2L, then M, (L], L") c M, (L1, L).
Similar inclusions hold for M,,, and M pax.

In 2003, I proved that MG(SS) = Mm(ss) = Mmax(ss) = Ma(ses) =
Mm(Ses) = Mmax(ses) = Const [5, Corollaries 3.2, 3.4, and 3.6]. Recently,
I characterized the maximal class with respect to maximums for upper semi-
continuous strong Swiqtkowski functions. It turns out that ./\/lmax(ssusc)
consists of upper semicontinuous strong Swiatkowski functions which fulfilled
some special conditions [8, Theorem 2.5|. In this paper, we characterize the
maximal additive and multiplicative classes for families Ssusc, Sslsc, Sesusc
and Seslsc (Theorems and and the maximal class with respect to
maximums for families Silsc, Seslsc and Sesusc (Theorems and

2. Auxiliary lemmas
Lemma [2.1]is due to A. Maliszewski [4, Lemma 1].
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LEMMA 2.1. Let M € R and assume that a function g: [a,b] — (—o0, M)
18 upper semicontinuous both at a and at b. Then there is a continuous

function ¢: [a,b] — [min{g(a),g(b)}, M] such that v = g on {a,b} and
¥ > g on (a,b).
The proof of Lemma [2.2| we can find in [7, Theorem 3.1].

LEMMA 2.2. For each function f: R — R, the following conditions are
equivalent:

a) f € Ses,
b) feD and f[I] = f[I n C(f)], for each nondegenerate interval I,
c) feD and f(x) € flI[z,t] n C(f)], for each x € R and each t € R\{x}.

The next lemma is probably known, but I could not find an appropriate
reference and prove it in |5, Lemma 2.4].

LEMMA 2.3. If f: R — R then the set f[A(f)] is at most countable.
The proof of Lemma [2.4] we can find in [6, Lemma 3.3].

LEMMA 2.4. Assume t@at I <R is an interval, g: I - R, and h: R - R.
If g,h € S5 then hoge Ss.

Now we will prove an analogous lemma for the family Ses.

LEMMA 2.5. Assume thgt I c R is an interval, g: I - R, and h: R - R.
If g,h € Ses then ho g € Ses.

Proof. Let € I and t € I\{z}. If g|I[x,t] € Const, then (h o g)|I[x,t] €
Const and

(hog)(x) e (hog)llz,t] nE(hog)].

In the other case, since g € See © D then g[I[z,t]] is a nondegenerate
interval. Since h € Sgs, by Lemma we have

(ho g)(z) € h[g[I[z, t]]] = h[g[I[z,t]] n C(h)] = R[g[I[z,t] N E(g)] N E(h)]
c h[g[I[w, t]nC(ho g)]] = (hog)[I[z,t] nC(hog)].
Clearly hoge D. By Lemma we obtain that hog € Ses. m
Lemma [2.6] and Remark 2.7] are evident.

LEMMA 2.6. Assume that I < R is an interval, g: I — R, and h: R —> R.
If g € lsc and h is continuous and increasing then h o g € lsc.

REMARK 2.7. Let f: R — R. If f € Slsc then lim(f,27) = f(z) =
lim(f,z"), for each x € R, and if f € Sgusc then lim(f,27) = f(z) =
lim(f, =), for each x € R.
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3. Main result

THEOREM 3.1. /\/la(sslsc) = Ma(seslsc) = ./\/la(ssusc) = Ma(sesusc) =
Const.

Proof. The proof of the inclusion Ma(seslsc, Sslsc) c Const is similar
to the proof of [5, Theorem 3.1]. So, we will only prove the inclusion
/Vla(Sesusc,S usc) c Const Let f ¢ Const. It follows that —f ¢ Const
and since M, (Seslsc, Sslsc) < Const, the function —f ¢ M, (Seslsc, Sslsc).
Hence, there is a function g € Seslsc such that —f + g ¢ Silsc. Put g = —3.
ThengeSesuscand (f+9) = —f+7 ¢ Sslsc. Thus f+ g ¢ Syusc, whence
f ¢ My(Sesusc, Squsc). Since

Ma(Seslsc, Sslsc) < Const ./\/la(sslsc) ) Ma(Seslsc)
and ’ z z 3
Mo (Sesusc, Ssusc) < Const € My (Ssusc) N My (Sesusc),
using Remark we obtain that
/\/la(sslsc) = Ma(éfeslsc) = Ma(ssusc) = /\/la(sesusc) = Const. u
THEOREM 3.2. Mm(sslsc) = ./\/lm(seslsc) = ./\/lm(ssusc) = Mm(sesusc)
= Consty U {Xx}.
Proof. First, we will show that
(1) M (Seslse, Sslsc) < Consty U {X ).

Let the function f ¢ Consty U {Xg}. If f ¢ S.lsc then Xg € Syslsc and
f=fXet¢ S,lsc, whence f ¢ Mm(seslsc, Sslsc). So, we can assume that
fe Silsc.

If f e S,sc\C then by Remark [2.7, f(zo) < ILim(f, zg) or f(zo) <

lim(f, x ), for some z9 € R. Without loss of generality, we can assume that

the first inequality holds. Define g = —Xp € Seslsc. Notice that fg=—f
on R and

lim(fg,zq) = lim(—f,z7) = —lim(f,z§) < —f(20) = (fg)(z0),

whence fg ¢ [sc. Consequently, f ¢ Mm(seslsc, Sslsc), and we may assume
that f € C. We consider two cases.

Case 1. f(xg) < 0, for some zp € R.
Then f <0 on (xg — 0,29 + 0), for some § > 0. Define

: -1,
o) = {(Sln(l’ — xo)) , if x # @,

-1, if x = xg.

We can easily see that g € S.slsc. Moreover, fg € usc\C at xg, whence
fg ¢ lsc. So, in this case f ¢ M., (Seslsc, Sslsc).
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Case 2. f(x) >0, for each z € R.

Then there is a closed interval [a,b] such that f is positive and noncon-
stant on [a,b]. By Theorem |3 3.1} there is a function g: [a,b] — R such that
G € Seslsc and Inof + g ¢ Sylsc on [a,b]. Define

(expog)(x), if z € [a,b],
g(x) = { (expog)(a), ifxe (—w0,a),
(expog)(b), if x € (b,0).
By Lemmas and expog € Seslsc on [a,b], whence clearly g € Seglsc.
But on the interval [a, b], we have
Ino(fg) = lno(f : (expog)) —Inof + g ¢ Silsc.

If fg e Slsc on [a,b] then by Lemmasnand. Ino(fg) € Sslsc on Ja, b],
a contradiction. So, fg ¢ Sslsc, which proves that f ¢ M (Seslsc, Sslsc).
This completes the proof of condition

Now, we will prove that M,, (Sesusc S usc) c Const+ U {X}. Let the
function f ¢ Const; U {Xx}. By condition ¢ My (Seslse, Sqlsc).
Hence, there is a function g € S.slsc such that fg ¢ Sylsc. Put g = —g.
Then g € Sesusc and —(fg) = fg ¢ Silsc. So, fg ¢ Ssusc, whence f ¢
/\/lm(865usc S susc). Since

Mm(Seslsc,Sslsc) c Consty U {Xx} Mm(sslsc) N Mm(seslsc)
and
Mm(Sesusc, Ssusc) c Consty v {Xg} C Mm(ssusc) I8 Mm(sesusc),
using Remark we obtain that
./\/lm(sslsc) = Mm(seslsc) = ./\/lm(Ssusc) M ( esusc)
=Consty U {Xg}. =
THEOREM 3.3. MmaX(Sslsc) = MmaX(Seslsc) = Const.

Proof. The proof of the inclusion Mmax(seslsc, Sslsc) c Const is simjlar to
the proof of [5, Theorem 3.5]. Since Const < Mmax(Sslsc)/m M pax(Seslsc),
using Remark we obtain that My (Sslsc) = Mpax(Seslsc) = Const. »

THEOREM 3.4. The function f € Mmax(sesusc) if and only if f € Sesusc

and two following conditions hold:

2) for each x ¢ C*(f), there is a § > 0 such that f(t) < f(z), for each
te(z—9,z),

3 for each x ¢ C™(f), there is a 6 > 0 such that f(t) < f(z), for each
(3) te (z,z+)9).



Mazimal classes for semicontinuous strong Swigtkowski functions 53

Proof. First, assume that f € Se/susc and conditions and are fulfilled.
We will show that f € Mpax(Sesusc). Fix a function g € Sesusc and let
h = max{f, g}. Since the maximum of two upper semicontinuous functions
is upper semicontinuous (see e.g. [2, p. 83]), h € usc. So, we must show that
h € Ses.

Let o < 8 and y € I[h(a), h(5)]. Assume that h(a) < h(B). (The case
h(a) > h(B) is analogous.) Since Mmax(D) = Dusc [I], we have h € D,
whence h(xg) = y, for some xg € [, 8].

If f(zo) > g(zo) then since f € Ses and g € Sesusc < Ssusc, by
Lemma[2.2 and Remark [2.7] there is an z1 € [a, 8] n C(f) such that g(z1) <
f(z1) = f(zo). Using the fact that h = max{f, g}, we clearly obtain that
x1 € C(h) and h(x1) = f(x1) = f(x0) = h(xg) = y.

If g(xg) > f(xo), we proceed analogously. So, let f(xzg) = g(x9) =
h(zo) = y. If 29 € C(f) then since g € Sesuse, we have g € €(h). So, we can
assume that zg ¢ C(f), whence zg ¢ CT(f) or o ¢ € (f). Suppose that e.g.
xo ¢ CT(f). (The other case is analogous.) First let 29 = o. We consider
two cases.

Case 1. xo ¢ C(f).

Then, by the assumption (3], there is a § > 0 such that f(t) < f(zo),
for each t € (zg, 29 + d). But since g € S.s, there is an x1 € [z0, 20 + &) N
C(g) n [, B] with g(z1) = y. So, since f € Sesuse, f(x1) < g(x1), and
h = max{f, g}, we have x; € [a, 5] n C(h) and h(x1) = y.

Case 2. xg € C(f).

If there is a 7 > 0 such that h(t) > h(zg), for each t € (zo,z0 + 7) then
xo € C(h). In the other case, choose a 7 > 0 such that z¢g + 7 < 8. There is
atr € (zo,x0 + 7) with h(t;) < h(zo). Define

to = sup{t € [zo,t;) : h(t) = h(xzg)}.
The fact h € D implies that
(4) h(z) < h(zg), for each x € (to,t;).

Moreover, observe that since h € D and condition ([4)) holds, we have h(to)
h(zo). But h € usc, whence h(tg) = h(zg). So, since f,g € Ses, h
max{f, g}, and condition holds, ¢ty € C(h). Consequently, tg € [a, f] N
C(h) and h(ty) = y.

Finally, let g € (o, 3]. Then, by the assumption (2), there is a § > 0
such that f(t) < f(xo), for each t € (29 — &, 20). But since g € Ses, there
is an 1 € (x0 — 6,20] N C(g) N [, B] with g(z1) = y. So, since f € Sesusc,
f(z1) < g(z1), and h = max{f, g}, we have 21 € [, 5] " C(h) and h(z1) = y.

So, h € S esusc, which proved that f € MmaX(Sesusc)

[IVAN
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Now, we will show that Mmax(sesusc) c Sesusc. Let f ¢ Sesusc. First
assume that f ¢ Ss. Then there are o < 8 and y € I[f(a), f(8)] such that
f(z) # y, for each x € [a, ] N C(f). Put g = min{f(a) — 1, f(5) — 1} and
h = max{f,g}. Then clearly g € Const  S.cusc. Since y € I[h(c), h(B)]
and h(x) # y, for each x € [a, B] N C(h), we have h ¢ Ses. S0, h ¢ Sesusc,
whence f ¢ /\/lmax(sesusc).

Now assume that f ¢ usc. Then e.g., f(zo) < lim(f,z7), for some
xo € R. (The other case is analogous.) Put g = f(x¢) and h = max{f,g}.
Then clearly g € Const < S.susc, and since

hzo) = g(z0) = f(x0) < lim(f,zg) = lim(h, z§),

h ¢ usc. So, h ¢ S.susc, whence fé Mmax(sesusc).

To complete the proof, we assume that f € Sesusc and condition is
not fulfilled. (Similarly, we can proceed if f € S.susc and condition does
not hold.) Then there is an zg ¢ € (f) and we can choose a sequence (zy,)
such that =, — z§ and f(z,) > f(x0), for each n € N. Since f € Ses, We
may assume that (z,,) < C(f). Hence for each n € N, there is a §,, > 0 such
that f(xz) > f(xo), for each © € [xy, — O, Tp + 0n]. Without loss of generality
we can assume that x,.1 + 0p11 < T, — &y, for each n € N. Define

f(x), if x € (—o0, x0],
f(z0), ifxeU;f:l[a:n—én,xn—kén]u(ﬂ:1+51,oo),
9(x) =1 f(zo)+n~", ifx=cy neN,
linear, in each interval [xy,41 + Ont1, ¢ and [cp, Ty — 0n],
n €N,

where
Tp+1 + 5n+1 + xp — O

Cp = 5
Then clearly g € usc. Moreover, since f € S.s and g1 (zg,0) € C, by
Lemma g € Ses. Now we will show that h = max{f, g} ¢ Ses.

Put o« = z¢ and § = ¢;. Notice that o ¢ C(h). Now fix an = € (a, f].
Then h(x) > f(xo). Indeed, if z € [z, — dp,xn + Ip] for some n € N then
h(xz) > f(z) > f(xo), and if z € (xp41 + Opt1, Ty, — Op), for some n € N then

h(z) = g(x) > g(zo) = f(z0)-
Hence in particular f(zo) € [h(),h(B)] and h(z) # f(zo), for each z €

[a, B] n C(h). Therefore h ¢ Ses, whence f ¢ M pax(Sesusc). This competes
the proof. =

An immediate consequence of Theorem is the following corollary.

z

COROLLARY 3.5. C € Mpax(Sesusc).
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