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A B S T R A C T   

Obtaining precise data on the mechanical properties of soft materials, often in the form of thin, pre-tensioned 
membranes, is crucial, especially when conventional testing methods have limited applicability. The article 
focuses on an innovative method for estimating the Young’s modulus and pre-stretching the membranes using 
the indentation method, assuming an isotropic, incompressible hyperelastic material. The parameters were 
estimated for two models of indenter-membrane contact: with perfect slip and without slip. Experimental tests 
were performed for pre-stretched latex membranes glued to a stiffer ring to minimize the effect of attachment on 
membrane deformation. In order to validate the estimation method, the predictions of the model with the 
determined mechanical parameters were compared with the results of indentation tests with a liquid layer under 
the membrane. The discussion shows the consistency of the estimation results with the literature results for small 
latex deformations, and indicates the advantages and numerous limitations of the approach, especially related to 
the choice of the material model.   

1. Introduction 

Indentation tests are a frequently used alternative to testing the 
mechanical properties of materials which, for various reasons, such as 
the availability or application in the form of thin films or the need for in 
vivo testing, are difficult to test in the form of classic samples used in the 
case of construction materials. This applies in particular to soft biolog-
ical materials, such as skin, cell walls as well as thin layers of technical 
materials, such as elastomers [1–10]. Attention in this work is focused 
on elastomers, which are materials with a complex structure and 
non-standard mechanical properties. The constantly expanding range of 
elastomers available on the market means that new methods for their 
testing are needed in order to control quality, assess the properties of the 
newly created products and explain the causes of possible defects 
[11–18]. While performing indentation experiments is not difficult, the 
interpretation of the results of such tests, including the conversion of 
experimental data into mechanical parameters, requires the use of an 
appropriate and often complex model [8,19–22]. A model that can be 
used for thin layers of materials is the membrane model. 

The theoretical analysis of the problem of a membrane subject to 
significant deformations was initiated in the 1940s by Rivlin and co- 
authors [23]. Works from that time have been collected and published 

[24]. The authors of this paper refer to the model formulated by Long 
et al. [25,26], which takes into account the presence of pre-stretch in the 
membrane. The proposed method is based on the assumption that 
biaxial elastomer stretching can provide more reliable data than the 
standard uniaxial tensile test, [7,27–29]. While uniaxial stretching has 
been standardized [30], biaxial methods are still not standardized and 
further improvement is recommended [27]. 

In the literature, we can find many publications devoted to advanced 
methods of membrane testing. For example, in [31] a two-axis 
tensioning device for study sheets of polymers with anisotropic prop-
erties was proposed. The work [25] presents the validation of the 
method of testing a round membrane under the pressure of the injected 
gas (bubble-inflation-technique). In [26], during a similar test, the fa-
tigue load and the recording of the test by the vision system were taken 
into account. In [32], an analysis of the method based on biaxial 
stretching of cruciform specimens samples was carried out. In [13,33], 
the influence of changes in the geometry of the sample on the test results 
was checked. In [7,34], uniaxial and biaxial tensile tests were compared 
on the same sample. 

This article develops an indentation method in an attempt to identify 
the Young’s modulus and pre-stretch of the membrane, assuming that 
the membrane material has the properties of an incompressible, 
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isotropic neoHookean material. The source of the data for identification 
were tests on a circular, initially flat membrane using a cylindrical flat- 
ended indenter. It was assumed that the diameter of the membrane 
would be much larger than the diameter of the indenter and the 
indentation depth would not exceed the diameter of the indenter. Such 
assumptions ensure that the contact of the membrane with the indenter 
occurs only on its face. It is assumed that there are no wrinkles on the 
membrane and that it is impermeable to liquids. 

Due to the friction between the indenter and the membrane, the 
deformation distribution of the membrane under the indenter cannot be 
clearly predicted. For this reason, it was decided to estimate the pa-
rameters using two extreme model assumptions for the membrane- 
indenter contact: one with perfect slip of the membrane on the 
indenter (slip contact) and one that excludes slipping over the entire 
surface contact (stick contact). All other scenarios where slippage occurs 
in part of the contact surface, assuming axial deformation symmetry, 
will be within the limits of the predictions for the considered extreme 
cases. 

In order to validate the method, the results of tests with a layer of 
water under the membrane were used, assuming that the volume of the 
liquid does not change. The quantities that were measured and used for 
validation were the force acting on the indenter and the liquid pressure. 
In the discussion, the obtained identification results were compared 
with the results available from the literature, and the possibilities of 
developing the method were indicated. 

2. Materials and test method 

Latex membranes with various initial stretches (pre-stretches) were 
used for the tests. The membranes were obtained by cutting circular 
samples from one of the available rehabilitation bands (Qmed, MDH Sp. 
z o.o., Poland). The average thickness of the tested band before defor-
mation was determined on the basis of measurements with a micrometer 
screw and was equal to 0.285 mm. The method of preparing the pre- 
stretched membranes is schematically shown in Fig. 1 and the station 
used for stretching the membranes is shown in Fig. 3a. First, the free 
band was attached to the stand by the clamping of an aluminum rings 
with an internal diameter of 130 mm. The membrane was tensioned by 
pressing the conical plastic piston to a controlled depth (h), measured 
with a caliper integrated with the stand. The force exerted by the piston 
on membrane Fp, referred to here as the pre-stretching force, was 
measured with a dynamometer (Sauter FL). The pre-stretched mem-
brane was then bonded on with quick-drying epoxy glue to a plastic ring 
made with a 3D printing technique. The ring, with an inner diameter of 
100 mm and an outer diameter of 120 mm, was pressed against the 
membrane by force Fc (weight approx. 2 kg). When the adhesive bonds 
the stretched membrane to the ring, the rest of the band was cut off at 
the outer circumference of the ring. Membranes with various initial 
stretches were prepared for the tests with a pre-stretching force of up to 
30 N. 

The bonding of the stretched membrane to the ring prevented the 
membrane from slipping out of the mounting bracket without applying 

significant compressive force. The use of lower compressive forces, in 
turn, reduced the occurrence of undesirable deformations of the mem-
brane not resulting from the pressure of the indenter. In the preliminary 
tests, when samples without ring bonding were mounted directly in the 
holder, such deformations and characteristic wrinkles were observed 
around the inner edge of the mounting holder. The solution of bonding 
the membrane to the ring using glue was an alternative to the method of 
making membranes together with a ring of much greater thickness than 
the membrane by casting such a sample in a suitable mold, see [35]. 

The measuring system for quasi-static indentation tests of mem-
branes is shown schematically in Fig. 2 and the appearance of its main 
components is shown in Fig. 3b. The stand consisted of a universal screw 
mechanism, an integrated caliper, a dynamometer (Sauter FL) equipped 
with a cylindrical steel indenter with a diameter of 10 mm, a liquid 
pressure sensor (DO-10P, Wika) under the membrane, a membrane 
mounting system from the water chamber and a computer not shown in 
Fig. 2. 

The penetration of the indenter was carried out in 10 steps every 1 
mm with a time of about 1 s per step and with intervals between steps of 
about 10 s. For each case, the tests were performed 2 or 3 times, first 
increasing the penetration and then withdrawing the indenter with the 
same indentation step. The indentation tests were carried out in two 
configurations: on membranes stretched in the air and on membranes 
under which there was water in a sealed chamber. In both cases, the 
quantity manipulated and measured with a caliper was the penetration 
of the indenter into the membrane, with the force response to the 
indenter being measured using a dynamometer. In tests with water 
under the membrane, the pressure of the liquid was additionally 
measured. 

Taking into account the geometrical parameters of the tests (mem-
brane diameter 100 mm, indenter diameter 10 mm and maximum 

Fig. 1. Diagram showing the tensioning and fixing of the membrane to the ring: a – ring (bonded to the membrane); b - membrane; c – aluminum rings; d – piston; Fp 
– pre-stretching force, Fc – clamping force on the ring. 

Fig. 2. Scheme of the measuring device: a - universal screw mechanism, b - 
dynamometer, c - caliper, d - membrane, e - membrane fastening system, f - 
pressure sensor, g - place for the liquid, h - liquid delivery channel. 
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penetration depth 10 mm), the model considerations could be limited to 
a situation where the contact of the membrane with the indenter 
occurred only on its front surface. Research in this range of penetration 
greatly simplifies the modeling of membrane deformation. 

3. Solution methods 

The membrane model corresponding to the experimental tests per-
formed is presented in Appendix A. Determination of Young’s modulus E 
and pre-stretching λp is carried out on the basis of quasi-static indenta-
tion test data for the case where there is no liquid under the membrane. 
In paper [36] it was shown that the solution of Eq. (A1) with boundary 
conditions (A4)–(A8) for the case of a membrane with a liquid is effec-
tively obtained using the Runge-Kutta method based on Lobatto quad-
rature formula. This method is used here to solve the problem both for 
the membrane without liquid and with liquid under the membrane. 

The least squares method is used to identify the parameters E and λp. 
These parameters can be found by minimizing the following objective 
function: 

χ2( E, λp
)
=
∑n

i=ni

⎡

⎣
Fi − Fi

(
E, λp

)

σFi

⎤

⎦

2

(1)  

where Fi are the values of the measured forces in the experiment and Fi 
are the forces determined from the model for indentation depth z0i, 
while σFi denotes the standard uncertainty of the measurement of forces 
Fi. The local minimization technique, known as the trust region dogleg 
method, is used here, and requires defining constraints. The lower and 
upper bounds of the Young’s modulus were defined based on the 
available data for latex. The upper limit of the pre-stretch value was set 
by taking an appropriate margin in relation to the stretch implemented 
during the preparation of the membranes. 

The summation of the squared residuals in Eq. (1) is from ni to n. The 
upper index n is the number of measurements (registered forces) in a 
single test, and the lower index ni indicates the smallest force taken for 
analysis. In all calculations, ni=4 was assumed, which means that data 
with a depth of 4 to 10 mm were taken into account. The omission of 
smaller force values in the objective function results from the observed 
instability of the numerical procedure integrating the membrane model 
for small penetration depths. In order to determine the forces from the 
model in a single iteration of optimization calculations, it was assumed 
that the pressure in the liquid present in the system of Eq. (A1) was equal 
to zero and the contact conditions between the membrane and the 
indenter were of the slip or stick type, resulting in the appropriate 
boundary conditions (see Appendix A). The coefficient of determination 
R2 was used to assess the quality of the fit of the experimental results by 
the model predictions. All codes (finding identified parameters and 
integrating models) were written in the Matlab environment (version 

R2009b). 

4. Results and discussion 

The section presents sample results of an indentation test of latex 
membranes with different pre-stretching tested without water and with 
water under the membrane. These results were used as data for esti-
mation of Young’s modulus and membrane pre-stretch and method 
validation, respectively. The section also includes an analysis of the 
uncertainty of parameter identification and a discussion of the results 
indicating the advantages and limitations of the proposed method in the 
context of other works. 

4.1. Sample results of indentation tests 

The tests were carried out using latex membranes with various de-
grees of initial stretching caused by the force, the maximum value of 
which was 30 N. In all cases, the membrane deformations were carried 
out repeatedly in the range of relatively small deformations, which 
minimizes the occurrence of the Mullins effect [37,38]. 

Fig. 4 shows the results in the form of force dependence as a function 
of penetration of the indenter into the membrane in the process of 
insertion and retraction of the indenter for 3 membranes with pre- 
stretching caused by pre-stretching forces of 0, 18 and 28 N and 
without water under the membrane. 

Fig. 5 shows the results showing the force and water pressure 
depending on the depth of the indenter for the same membranes when 
the space under the membrane is filled with water of constant volume. 

Fig. 3. Equipment for tensioning the membranes (a) and testing the membrane with the indentation method (b).  

Fig. 4. Force dependence on indenter depth for membrane pre-stretching force 
Fp=0, 18 and 28 N without water under the membrane. 
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In both tests (with and without water under the membrane) a slight 
hysteresis is observed in the force versus penetration depth plot, despite 
the slow loading and unloading of the membrane. The pressure in the 
water takes a similar course. 

4.2. Identification results 

In accordance with the procedure described in paragraph 3, the 
identification of Young’s modulus E and pre-stretch λp was carried out. 
As the input data, the vector of forces for a set of indentation depths 
z0iwere used. The values of uncertainty of measurement of the force uFi 
are assumed to be independent of the indentation depth, allowing its 
presence to be neglected in Formula (1). The results of the estimation 
together with the values of the coefficient of determination R2 for 
different values of the pre-stretching force and both considered contact 
conditions of the membrane and the indenter (slip, stick) are included in 
Table 1 and illustrated in Figs. 6 and 7. 

The results of estimation of Young’s modulus for the membranes 
with different pre-stretching forces show noticeable differences in the 
values obtained when using the stick or slip contact model. In general, 
however, greater discrepancies are seen between the results obtained on 
the basis of tests using membranes with different pre-stretches. The 
average Young’s modulus values were 2.22 MPa for stick contact and 
2.36 MPa for slip contact. 

The results of the estimation of the pre-stretching λp of the membrane 
show an approximately linear relationship with the pre-stretching force, 
see Fig. 7. At the same time, there is a slight difference in the results 
obtained for slip and stick contact. The graph shown in Fig. 7 addi-
tionally shows two results measured directly from the membrane using a 

measuring tape with a millimeter scale. The diameters of the circles 
drawn on the membrane, marked with a permanent marker before 
stretching and after stretching, and bonding the membrane to the ring. 
The pre-stretching values determined are 1.066 and 1.116, respectively, 
for the pre-stretching force of 18 and 28 N, and these values are com-
parable to the stretches determined indirectly in the optimization 
process. 

The values of the coefficient of determination R2 presented in Table 1 
indicate a good agreement of the predictions of the model containing the 
determined values of modulus E and pre-stretch λp for both the slip and 

Fig. 5. Dependence of the force (a) and pressure (b) of the liquid on the depth of the indenter for a membrane with a liquid for membranes with pre-stretching force 
Fp = 0, 18, 28 N. 

Table 1 
Results of identification of Young’s modulus E and pre-stretching λptogether with the values of the coefficient of determination R2 for different values of pre-stretching 
force and contact conditions of the membrane and the indenter (slip, stick).  

Pre-stretching force 
Fp[N] 

Membrane thickness 
[mm] 

Results for slip contact Results for stick contact 

Young’s  
moduli 
E [MPa] 

Pre- 
stretch  
λp [-] 

R2 Young’s  
moduli 
E [MPa] 

Pre- 
stretch  
λp [-] 

R2 

0 0.285 1.94 1.0057 0.996 1.79 1.006 0.996 
0 0.285 2.95 1.005 0.998 2.73 1.005 0.998 
5.7 0.27 2.37 1.014 0.99 2.19 1.016 0.99 
10.1 0.26 2.26 1.026 0.98 2.08 1.029 0.982 
18.3 0.235 2.03 1.061 0.975 1.86 1.068 0.975 
19 0.22 2.29 1.068 0.97 2.1 1.076 0.97 
28 0.21 2.16 1.099 0.97 2.12 1.099 0.97 
30 0.2 2.89 1.099 0.97 2.85 1.099 0.97  

Fig. 6. Young’s modulus values of the membrane material for various pre- 
stretching forces and contact conditions. 
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stick contact conditions with the experimental results. This is confirmed 
by the graph in Fig. 8a, which presents example results of the experi-
ments and modeling for membranes with pre-stretching forces of 10 and 
19 N. The fit quality turns out to be independent of the indenter- 
membrane contact condition. 

In order to assess the uniqueness of the results of the optimization 
procedure, repeated identification attempts were made with different 
starting points for E and λp. An example showing the results of such tests 
for a membrane with a pre-stretching force 19 N is shown in Fig. 8b. 

Lines connect the starting points (starting values of Young’s modulus 
and initial stretch) and the result values obtained from the identification 
procedure. It can be seen that for the considered range of starting 
parameter values, the identification result is unambiguous, which in-
dicates the existence of one minimum of the objective function. 

4.3. Uncertainty analysis 

The evaluation of standard uncertainties of directly measured 
quantities xi, i.e. displacement z0, force F, membrane thickness h0 and 
liquid pressure p was made on the basis of procedure type B [39] ac-

cording to the formula uxi =
̅̅̅̅
a2

3

√

where 2a is the difference between the 
bounds of xi. In the case of measuring the indentation depth with a 
caliper, the reaction force of the membrane with a dynamometer and the 

thickness of the membrane with a micrometer, the resolution of the 
measuring apparatus was adopted as the value 2a, while for the mea-
surement of pressure the limit uncertainty was assumed, determined on 
the basis of the product of class of the apparatus and the measuring 
range, divided by 100. 

The resolutions of the caliper, dynamometer and micrometer are 
respectively: 0.1 mm and 0.02 N and 0.01 mm. The class and range of 
the pressure gauge are 0.1 % and 25 kPa respectively. Finally, the un-
certainties of the measurement of displacement z0, force F, membrane 
thickness h0 and liquid pressure p are 0.029 mm, 0.0058 N, 0.0029 mm 
and 14.4 Pa, respectively. 

Uncertainty of the identified parameters: Young’s modulus and pre- 
stretch are estimated on the basis of the calculation procedure adopted 
for non-linear problems solved by the least squares method [40]. Ac-
cording to this procedure, first a curvature matrix is determined, and the 
components of which are calculated according to the formula: 

αkl =
∑n

i=ni
u

1
2
Fi

[
∂Fi

∂ak

∂Fi

∂al

]

(2)  

where ak and al denote the identified parameters E (if k or l = 1) and λp (if 
k or l = 2), and the standard uncertainty of force measurement uFi, ac-
cording to the previously adopted assumption, is a constant. The values 
of the derivatives ∂Fi

∂aj 
in (2) are determined for parameters E and λp 

ensuring the minimum of the objective function. 
The inverse of the curvature matrix a is the covariance matrix C, i.e.: 

Ckl = [α]− 1
kl (3) 

The uncertainties of the identified parameters E and λp can be 
determined as the square roots of the diagonal components of the matrix 
C, i.e.: 

uE =
̅̅̅̅̅̅̅
C11

√
, uλp =

̅̅̅̅̅̅̅
C22

√
(4) 

Using the experimental results for five membranes prepared with 
different prestretching forces and Formulas (2)–(4), where the de-
rivatives ∂Fi

∂aj 
were approximated numerically for both membrane models 

used, the uncertainty values uE and uλp were determined and given in 
Table 2. 

4.4. Method validation 

Validation of the proposed identification method was carried out by 

Fig. 7. Membrane pre-stretch values λp [-] for different pre-stretching force and 
contact conditions and corresponding regression lines. 

Fig. 8. Example results of fitting the indentation curves by the model with parameters determined for optimization (a) and illustration of the selected identification 
process with different optimization starting points (b). 
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comparing the results of the modeling and indentation tests for the 
membrane with the liquid under the membrane. The modeling results 
were obtained using Young’s modulus E and the pre-stretch λpvalues 
determined from liquid-free membrane tests, as per Table 1, for both the 
slip and non-slip cases. Selected validation results are shown in Fig. 9 for 
the membrane with pre-stretching forces of 18 and 28 N. 

The graphs show a good convergence of the theoretical predictions 
with the experimental results. The role of the boundary condition for the 
contact of the membrane with the indenter does not play a significant 
role. The comparison shows that the agreement of model predictions and 
experimental data for force (Fig. 9a) is better than for pressure (Fig. 9b). 

4.5. Discussion 

The results of the estimation of the Young’s modulus (Fig. 6) show a 
noticeable dispersion of the stiffness modulus values determined for 
different membranes of the same material, despite the good agreement 
between the individual model predictions and the indentation test re-
sults. The high R2 values (Table 1) and the good fit of the modeling 
results and experimental results, an example of which is shown in 
Fig. 8a, indicate the consistency of the results. Possible reasons for the 
scattering of the estimated values of the stiffness modulus can be asso-
ciated with the material or methodology of experimental testing of the 
membranes, but they can also have a source in the model or identifi-
cation method used. 

The material or experimental causes are inhomogeneity of the 
starting membrane material or imperfect preparation of the stressed 
membranes. Due to the friction between the membrane and the 
tensioning piston (Fig. 1), the uniformity of the pre-stretching is not 
guaranteed. In turn, the reasons related to modeling are, for example, 

the incomplete adequacy of the neoHookean model of the material, not 
taking into account the internal viscosity or deviations from the assumed 
boundary conditions, in particular for the contact of the indenter and the 
membrane. Computational problems may result from integration errors 
of the governing equation system or from ambiguities in the identifi-
cation procedure. 

As part of the research, efforts were made to recognize and limit the 
impact of the above-mentioned factors on the identification results. 
Thanks to the use of gluing the membranes to the ring, then de-
formations or slipping of the membrane from the holder, which may 
occur in tests of membranes mounted directly in the clamping holder, 
are limited. 

Due to the difficulty of controlling the contact condition between the 
indenter and the membrane, the identification calculations were carried 
out for two extreme assumptions, i.e. ideal slip and complete lack of slip. 
Due to the lack of significant differences between the identification re-
sults for both contact conditions, it can be estimated that the role of this 
factor is insignificant, and each of the intermediate cases in which a 
partial slip occurs will be within the limits of the results for extreme 
cases. 

The work assumes a model using an incompressible neoHookean 
material. As a consequence, the relaxation of the pre-stretched mem-
brane and the creep of the membrane under the load of the indenter 
were omitted. The adoption of these assumptions was associated with 
the implementation of quasi-static tests and relatively small de-
formations of the membrane. Further work is needed using other models 
to assess the impact of these assumptions on the identification results. 

The tests of the applied optimization procedure showed that, 
regardless of the choice of starting point values, the same values of the 
estimated parameters were obtained (see Fig. 8b). This means that the 
applied local optimization procedure for minimizing the error function 
worked well and there was no need to use global optimization methods, 
which are much more time-consuming. At the same time, it should be 
added that problems with the convergence of the integration of the 
model equations for small forces and penetration depth have not been 
eliminated, and therefore the range of data included in the error func-
tion has been limited. Diagnosing and removing the causes of integra-
tion problems remains the goal of future research. 

Despite the issues of Young’s modulus dispersion and its possible 
causes still requiring further study, it is worth noting that the obtained 
results are consistent with the data determined in the uniaxial tensile 
test available in the literature. The results of such tests for small de-
formations give Young’s modulus values from 1.7 to 2.7 MPa [41–43], 
and for large deformations - values from 0.8 to 1.75 MPa [44–47]. 

Table 2 
Uncertainty of the identified parameters: Young’s modulus and pre-stretching 
determined for different membranes and two models of contact.  

Pre- 
stretching 
force 
FP [N] 

Slip contact Stick contact 

Uncertainty of 
Young’s 
modulus 
uE[kPa] 

Uncertainty 
of pre- 
stretching 
uλp [-] 

Uncertainty of 
Young’s 
modulus 
uE [kPa] 

Uncertainty 
of pre- 
stretching 
uλp [-] 

0 47.5 0.00039 54.7 0.00042 
5.7 48 0.00055 55.4 0.00059 
10.1 47 0.0009 54.0 0.0010 
18.3 42.6 0.0023 48.4 0.0025 
28 39.9 0.0038 44.9 0.0042  

Fig. 9. Comparison of experimental results and model predictions for the force on the indenter (a) and the pressure of the liquid under the membrane (b) depending 
on the indentation depth. The values of Young’s modulus E and pre-stretch λp for the model were adopted on the basis of the membrane test without the liquid. 
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Therefore, the average values of the moduli determined in the inden-
tation test, which are 2.22 MPa for the no-slip condition and 2.36 MPa 
for the slip condition, are within the range of the Young’s modulus 
values of the uniaxial tensile test in the range of small deformations. It is 
worth noting that the evaluated uncertainties of Young’s modulus and 
initial stretching, given in Table 2, are much smaller than the differences 
of these parameters determined from subsequent measurement series 
(for different Fp). The uncertainties are small compared to the values of 
the parameters themselves. As the pre-tension of the membrane in-
creases, the pre-stretch uncertainty increases significantly while the 
Young’s modulus uncertainty decreases slightly. 

It can be noted that instead of using the membrane in an air test to 
identify the stiffness and pre-stretching, a test with a liquid under the 
membrane could be used. Different tests have shown, however, that the 
liquid method is more troublesome at the stand preparation stage, 
especially when it comes to complete elimination of air from under the 
membrane. In addition, more significant convergence problems were 
observed in the developed procedure for the numerical solution 
compared to the solution for liquid-free membranes. At this stage, this 
excludes this method from iterative, automated in the optimization code 
applications for parameter estimation. The model with liquid under the 
membrane could be used in the identification of some tests on biological 
materials, such as in the case of examining skin with a soft layer of 
subcutaneous tissue in the early stage of lymphedema or in the study of 
cell membranes, if a flat membrane model would be applicable. 

Due to the model of the elastic membrane material adopted in the 
work, the developed identification method applied to polymeric mate-
rials relates primarily to quasi-static properties. Such properties, espe-
cially stiffnesses, may differ from dynamic properties where internal 
friction affects the estimated stiffness values [48]. The paper neglects 
irreversible phenomena such as the dependence of the stress-strain 
curve on the maximum load in the previous loading cycle (so-called 
softening of the stress-strain curve), called the Mullins effect [37,38] and 
plastic deformation of the material. The elastic material model of the 
membrane is also as simplified as possible (incompressible neoHookean 
material) and further development of the finite deformation identifica-
tion method, depending on the type of membrane material, may require, 
for example, the Mooney-Rivlin model [21,49–51], the Ogden model 
[50,52–54], the Arrud-Boyce model [53,55], the Yeoh model [56,57] or 
the Gent model [58,59]. Thus, the discussion in the paper is directed 
only to the case study analysed, and for other types of materials (elastic 
or non-elastic) an in-depth study of the material properties of the 
membrane for specific boundary conditions is required, case by case. 
Other assumptions of the developed identification method include: a flat 
indenter and a constant contact surface with the membrane without side 
contact (other indenter shapes and variable contact surfaces were 
omitted), an initially flat, circular membrane (the method does not 
apply, e.g., to cell membranes), no wrinkles on the membrane and its 
impermeability to liquids (validation tests with water for porous mem-
branes are excluded), incompressibility of the liquid under the mem-
brane. Abandoning the above assumptions requires further work on the 
method. 

5. Conclusions 

The methods were presented of determining the Young’s modulus of 

the membrane material and the initial stretching of the membrane based 
on the results of the indentation test and the solution of the inverse 
problem. In addition, the method was validated by comparing the results 
of the simulation of the indentation test of the membrane under which 
the volume remains constant (the closed space is filled with the liquid) 
with the experimental results, using the previously determined values of 
Young’s modulus and initial stretch in the simulations. The independent 
(manipulated) variable in both tests (identification and validation) is the 
displacement of the indenter. The dependent variable is the force with 
which the membrane acts on the indenter and, in the case of the vali-
dation test, additionally the pressure in the liquid. A latex type elastomer 
was selected as the test material, the samples of which were prepared 
with various degrees of pre-stretching. Validation tests showed the 
agreement of the theoretical predictions with the experimental results. 
The observed differences were justified by technical problems (prepa-
ration of homogeneous samples of stretched membranes, deviations 
from the ideal implementation of the experiments) or factors not taken 
into account in the model used. 

In the proposed method, the limit for the indentation depth used was 
assumed to be maximally equal to the diameter of the indenter, which 
simplifies the modeling of membrane deformation. Relatively large 
membrane surfaces in the proposed tests compared to the sample sur-
faces in uniaxial tensile tests reduce the role of material inhomogeneity. 
By bonding the membrane to the ring, the simple process for preparing 
samples of pre-stretched materials and the undesirable effects of 
squeezing the membrane in the holders were eliminated. The above- 
mentioned aspects give hope that the developed method will be useful 
in the study of technical materials as well as biological or bio- 
replacement materials (e.g. leather or artificial bladder walls). 

Considering the limitations of the method noted, its further devel-
opment can be envisaged. In particular, other material models should be 
considered, e.g. the Mooney-Rivlin model, often used for elastomers, or 
a model that takes into account the internal friction in the material. 
Regarding the equipment, it is worth automating the measurement, in 
particular by adding an appropriate indenter drive (electric motor), 
microcontroller and software that enables faster setting of the mea-
surement parameters and the convenient acquisition of results. Thanks 
to this, it will be possible to reduce the step of the indenter and reduce 
the measurement uncertainty. 
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Appendix A. Model 

In order to model the membrane rigidly clamped along the edge at r=Re at its periphery, loaded axi-symmetrically in the indentation test, we 
adopted the model of incompressible neoHookean material. Detailed assumptions and equations of the model along with a description of its numerical 
solution are presented in the paper [36]. The model concerned a membrane without pre-stretch, under which there was an incompressible liquid. Here 
we present the equations of the model, introducing the effect of pre-stretching and distinguishing two cases: without liquid and with liquid under the 
membrane, as shown in Fig. A1. In order to take into account the pre-stretch of the membrane, we assumed, in accordance with the concept proposed 
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in [60], that in the reference configuration to which the formulated description of the membrane refers, initial equi-biaxial stretches were already 
present.

Fig. A1. Membrane deformation during the indentation test without liquid (a) and with liquid under the membrane (b).  

In order to model the deformation of the membrane by the indenter, a cylindrical coordinate system (r, ϕ, z) was adopted and the considerations 
could be restricted to any membrane cross section. The material point originally located in the reference configuration at (R, z = 0) was displaced to 
the point (r = r(R), z = z(R)), as shown in Fig. A1. The coordinate s denoted the arc length of the cross-section curve of the deformed membrane. The 
angle made by the tangent of the cross-section curve at (r, z) with the r axis was a. In the reference configuration the membrane was flat and its center 
(R = 0) lay in the z = 0 plane. A cylindrical indenter of radius a located in the axis of the membrane caused its deformation. In the case of the 
membrane placed on a liquid layer, the volume under the membrane did not change and the shape of the liquid reservoir did not play any role. The 
pressure in the liquid under the membrane could be expressed as p = P0 − ρgz, where P0 was an unknown constant dependent on the membrane 
deformation and equal to zero for the undeformed state, r was the liquid density, and g denoted the gravitational acceleration. When there was no 
liquid under the membrane then the pressure was p = 0. 

The set of equations that describe the finite deformation of the membrane, ignoring its weight, is as follows [36,61,62]: 

dλs

dR
=

λs
(
Tϕ − Ts

)
cosα − λϕ

(
∂Ts

∂λϕ

)
(
λscosα − λϕ

)

Rλϕ

(
∂Ts

∂λs

)

dα
dR

=
pRλsλϕ − Tϕλssinα

RλϕTs

dλϕ

dR
=

λscosα − λϕ

R
dz
dR

= λssinα

(A1)  

where λs and λϕ are the longitudinal (along the cross-section curve in the r–z plane) and latitudinal (along the direction normal to the r–z plane) 
principal stretches, respectively: 

λs =
ds
dR

, λϕ =
r
R

(A2)  

where Ts and Tϕ are the longitudinal and latitudinal line tensions in the deformed configuration, respectively. For the incompressible neoHookean 
material (the simplest hyperelastic model) of the membrane, the tensions are: 

Ts =
Eh0

3

(
λs

λϕ
−

1
λ3

s λ3
ϕλ6

p

)

Tϕ =
Eh0

3

(
λϕ

λs
−

1
λ3

s λ3
ϕλ6

p

) (A3) 
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where E is the small-strain Young’s modulus, h0 denotes the thickness of the undeformed membrane, and λp means an equi-biaxial pre-stretch. 
In order to determine the force on the indenter as a function of its penetration depth, a part of the membrane that, in the deformed configuration, is 

located between the edge of the indenter (r(R0) = a) and the clamping ring (r=Re) is considered (the radial coordinates of the left and the right 
boundaries in the reference configuration are R0 and Re). Given the system of equations (A1), four boundary conditions can be formulated: 

(1) The axial coordinate of the left boundary of the membrane in the reference configuration R0 is: 

z(R0) = z0 (A4) 

(2) The stretches of the membrane at the indenter edge depend on whether the membrane/indenter contact is a stick or slip type (see [36]). For the 
stick contact, the condition can be written for latitudinal stretch: 

λϕ(R0) = 1 (A5) 

For the slip contact the equilibrium condition for the longitudinal line tensions, the continuity of latitudinal stretches, and the homogeneity of the 
stretches in the plane part of the membrane under the indenter for R = R0 lead to the condition (see [36]): 
(
λϕλp

)6
− 1

(
λϕ
)3 =

(
λsλp

)4( λϕλp
)2

− 1
(λs)

3 cosα (A6)  

where stretches λϕ, λs are defined for R = R+
0 (plus sign superscript denotes right-hand limit) and the pre-stretch λp has been added compared to the 

paper [39]. 
(3) For the clamped edge of the membrane (R=Re) the axial position is: 

z(Re) = 0 (A7) 

(4) The latitudinal stretch is: 

λϕ(Re) = 1 (A8) 

In the procedure for solving the model with liquid under the membrane, the requirement that the volume of liquid under membrane V is constant is 
used to determine the pressure p, i.e.: 

ΔV =

∫ Re

R0

2πr(R)z(R)dR + πa2z0 = 0 (A9) 

In the absence of liquid, it is enough to assume that in the system of equations (A1) p ––– 0 and the boundary conditions (A4)–(A8) do not change. 
For a given indentation depth z0, the force F acting on the indenter may consist of two components: the force due to the stresses in the membrane 

for r(R0) = a and, in the presence of a liquid, the resultant force transmitted through the membrane on the surface r ≤ a, coming from the pressure of 
the liquid, is: 

F = 2πaTs(R0)sin(α(R0)) + πr2p(R0) (A10) 

In the absence of liquid in Eq. (A10), only the first term remains. 
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