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le Let us suppose, that it is given an operator equation”

Ax =7 0)
Where Xé&X and vy £ Y, and where (X,Y) are Banach spaces.
This operator equation is of the first kind.
For this kind of operator equation, in general the problem of
solution is not well posed in Hadamard sense. Saying more
exactly the problem of solution for equation as (1) is not
Well posed in Pietrowski®s Sobolev®s sense.
That means, in Pietrowski®*s and Sobolev®"s sense, we need the
solution of (1) which «rust have the property of stability.
Ve shall omit the well known definition of well posed solution
Problem in Sobolev®s sense, but we shall only remind the
oondition of stability for the solution of equation as (1).

We say, that operator equation (1) has the property of
stability on the spaces (X, Y) forgiven element y, if for
every £.> 0 there exists suchnumber cI'=<r(€,)>0 xhat the
Implication holds :

Iy -ynil implies X - Xj.|I<& , Q)
Where yg eyvY and x"™é X.

#Bis we have said above, this stability condition in general
does"t hold for the operator equations of the first kind as
this one.

However, many important physical and astrophysical problems
Laed to operator equation (@) .
can see easily that the Schwarzschild Integral equation

D(r)Y[m + 5-5 1°E r - A(rD] r2 dr = a(m) ,
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where D(r) 1is stars density and the function is luminosity
function, and where function A(m) is a derivative of the
function N(m) obtained by stars calculating process, is an
operator integral equation of the form £1) . Therefore all
given above remarks hold for this equation.

In this paper we shall investigate the solution of the
Schwarzschild integral equation (k) in the modified sense. It
means, we shall show, that there exists such a subspace SE£X,
for elements of which the stability condition holds.

For this purpose we shall first transform the given Schwarzs-
child integral equation (K) to the new form.

Taking the Schwarzschild equation £U) we achieve a substitu-
tion Vy - 5 log r. From™this substitution we obtain that

r=e>10ged, - cop
where
c = 1
5 log e

Therefore we may write that

M=m+5 -(F+ A (eC?) .

Using for function A (e° ?) the approximative value a, we
may write that

M=m+5 - (F+ a)-
On the contrary dr = c ec”™ dj> , and the new boundary of
integration will be :
=51og 0=-00 , =5 1log 0 co) = +co

The Schwarzsohild integralequation {4) will take the fol-
lowing form

+@
ND(EHIF (m+5-(g+a) °2~* c eC™ &= A(M
- 00
or o
J D (e°”™ cenrcr(m + 5 - (AfF+ a)yndy = A(m)
- 0o

Taking once more the substitutions of the form:
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m+5=w C ¢ a = R*» the boundary of integration will
be the same, and df = dR*

The new form of the investigated Schwarzschild equation will
be of the form:

ﬁ_c):l (e°™R “ a) }o e“3aC, e3cR {vi - R")dR’= A(yg - 5),

f D(e“aC. e°R) ce"a°<e3cR (yi - R)dAR*= A(y - 5),

S D (f ecR ) £2e3cR.tf - R") dR*= A(p - 5) .
Taking : D~e*1)C =4, (O
and A(yi - 5)=0T1(p) we obtain the convolution forttjof the
Scharzschild integralequation as following

J If(H - r* ;a1 (R") dR"=oT1 (?) )
In the convolution form of the Schwarzschlld equation, the
is an unknown function, the if-function as a kernel
of the equation is given and the function (Jnis also
given.
Ve can see that the new form (5) of the operator equation
is also an operator equation of the first Kkind.
Therefore for this equation doesn’t hold the well posed
solution problem in Sobolev sense.
But we may investigate this equation as an operator equation
for which the well posed problem of solution is given in
Laurent Schwartz sense. We introduce the following
Definition 2. Ve say that the problem of solution of
the convolution form of the equation (5) is well posed in
Laurent Schwartz sense if the solution exists in the subspace
SCL1(r), it is unique in the space S and if it is stable
the bounded subset Sq of the space (S;:lIlkl ”"R”™)in sense
°f the Definition 1. given over.
Here S denotes the space of fast decreasing functions
°n R which was introduced by Laurent Schwartz in poj.
We shall show that there exists a bounded set S
for which elements we shall obtain the well posed problem of
solution of the Schwarzschlld’s integral equation in Laurent
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Schwartz sense.
2_For this purpose we shall take anlntegral equation

JK@ET) X (F) d?= y(b) , ®
where flﬁﬁction y 6 Y 1Is given and the solving solution xfcX,
and where X, Y are Banach spaces such that,by given Kernel
K (t,%) the operator

K =j k Ct.T) c.) dr (7
naps the elements xd&X in the elements y £ Y,5T is a given
domain of integration variable.
For our purpose the domain St will be thereil space IR , it
mean the improper interval (- 0o , +o00)

Suppose, that the kernel K(t,t ) will be positive and
that the Banach real space X =Y = LP , M) , where p=1.
But in the space LP (IR ,Lyi) there exists a oone K of
positive elements belonging to LP (H, p)- In this case the
operator K ; LP (IR ) = > LP (3R ,.y) maps the oone K in
the form ; K (K)c K .

Def. 3. Ve also say that the positiveoperator K has a mono-
tonioal property if the implication :

uUua v implies Kui Kv .
holds.
Now we shall investigate two integral equation
K (£, T)i Ct) df = ij(® ®
K (t,-t) x (?) dtr = ij™®) (©)
where the kernel K_(t,T) approximates the kernel K(t,?)
in the space LP ,Y) » where = 1.
Suppose further, that element of space LP (IR, Yy)
approximates the element of the spaoe LP (3R, fwhere
pel.

Ve suppose that the kernel of this equation Ffulfils the
following conditions: it is measurable iIn RxR; it is integra-
ble in X for every t£R and it is Integrable in t for
every t6 R . Ve assume further, that the integral
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9 (@®=-FK@E,t)dtr X, > o
K R e

and that the kernel K(t,T,)¢.S, where SC1"(H) is the sub-
8pace of fast decreasing functions on R. Further assumptions
about the kernel K we shall give below.

Under this assumptions we can write the equality

C K(t.r)x cr)dt - /7 KACL.t) x~(t) dt = (©) - ~ cb)

Now let"s modify this equality as follows

C k/t,t) x (©)dt - CK(t,t) x.(0) dt +/K Qt,I) xx @) dr _
B 0 B °

»

JpKACE,B) x (B)dt= j(©) -y f(®
Ve obtain that

/K(N,<C) (x (1) - *sath* = IN(D- "<t) + INKNME,1)- K@, D).

exj(t) dC
Integrating the last equality over the domain TO , where

té Wl we obtain the equality
sign(x () - xM®)) Ix () - xc(M 1 dCdt =
= /("<*0 -~ 00) dt + jyCKAIt.T) - K(t,!>) x~Mt)d"C dt

Supposing that the Fubini theorem holds we obtain the equality

/(("k(,) dt) (dign(X(T)- xrCr/1 x(t)- xA ()O\dt =
ft ft
= f (4 00 - dt +J(] N(*Nn>- K@t4)) dt) Xg(X)dt

From this equality we easily obtain the iInequality
I"sign X (D) - XF (1)) Ix (©) - x F) JHCK () eCt §
- " dT *£ Kk () jx~CD jdIr, 10)
vhere we have designed
ftk ()= / K(t,t) dt for r £ 3R and
k(t)= K(t,t)]dt for 1 é Te
In addition, if we are able to approximate the kernel K(t,V)

by K_(t,F) as well, that the integral k (%) will be
independent of Té ft , and the value of Kk(t) = kQ = constant,
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will be sufficiently small that is if for t is K (D> ,
we obtain instead of the inequality (10) the inequality,

I Sign (Xxf)- x¢c@®O)IXx (® - x*®OIdp »
< AMly(t) - y$S(C*> 1dt +§ 2 1IFj-(«)|dt (@l
Where dy d*C , &iat means, that the measure WV has a
density ytjftr) » t ¢IR and £ is a sufficiently small positive
number .

Suppose, that also the integral N is independent of

f on domain It . It means that the measure p 1is of constant
density yFK =J60 > O» we obtain instead of inequality (1)
the inequality

jfsign (X(tr) - X j-(o|x (I~ x5(r)|K0 dC 1é

N /ly(e>- yr-Ce)df + M x~M(r) |de

T REAERN W)'xs |~
*iJdr-W I * 4—J'vllb]@
Now, if Itherapproximation of y by y” in e space L %

is as well, that |y - n3d R™ £o *where CO> 0 is a
small number, and if we assume thatthe solution Xx is
bounded in the space L1(3O that means, that the solution
Xs belongs to the ballB = { . fL1(RA? o0 # in

the space L (B) then we obtain that the following inequality

holds
IX sign(x () - x» (O) IX (- + box2

* K + bo TI(') ?1 = to + *\ <13>
The above investigationmay be without sense, if there does
not exist such a kernel for which conditions required by us
may be not satisfying.
But the class of such kernels K(t,T) 1is not empty.
The kernel , -

K(t,t) =Ee~ “>Ct-1) t,Xed o**)
as we easy show fulfil our required conditions.
The kernel (14) is positively defined on the space X if

E 0, The integral
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it Ct)= JE e OLt ~V>2 dt= E "e“°Ct ~2) dat =
Br -2 m _
= E e~ du = EJx-~ , It means, thjat for the

kernel CIk) the integral independent of T belonging
to the interval (- co, +[).
If we givetwo such kernels 2

K(t,t) = E é“WCt -TI)2 n

K"t.t) = E e“°Jd 05)

then we can see, that 2~t)m

KU-0ldt. y LI e-“~ . - (e-T)21d~F
N Ily."vl -U*] , IE.-4utr O,,7_ T -04.t)=
* RE:-4v=Dy2 -r - ../5 + t~fc ST

N maxE EdJ (ma* (N s \['Y)/~ Eo jdh. “ Eo

But we can see that two positive numbers Ej and may be
always chosen so that the produot Eo \)/f%()TA will be suf-
Violently small.
Indeed, we have 2 2 2 2
/ - CorCt-D) -co(-t-r) , -uu -00u i
1 =JIlere i -Ee Idta)|Ee c -Ee 1du
= 1 Ee jJ-£8 Lii - 11du .
But, taking ~ =0 and R > 0 such that
2 o
ME 1 e~uU du<] and E -~ 1 ‘F‘glﬁ ,
Ju]>Ro
v® obtain farther that 2
/ —(|5u < .2 —Z3cj }u s
1T JEe Mdu + J e |] C1+?)e - 1] du é
lul>R - Rc
°R * 2
- n /~ n “@.-u
"7+ /7 10 +1R-)e -
-Ro °
last inequality will be true since we have for sufficiently
8mli > 0 the Implication: cJj — O ifcT—-> 0 and we
see easy that: 2

vV “r= |° - "1=x» -



ifS - w0 for ufsRo,Ro> .

For we have the following inequality 2«
VI K . Vv n S - 1 (*/\ ' K H * Cm U)n
Sinoe R
-(tJj-<Pu )
7= +gr-) " 2 ue “ = 0, given u = 0.
Then, for ° g
fcCu)=1 + g— )« -1
° o
we obtain that 2
1-Tr +1° Br du * J°I1(1+5R-)e ° _— 1fdu -
-R °© -R °©
s ¢ +H° i _AO7-0F) R?
M +T + 2Ro + “5r0)® -1 +7r+2 =2 °

It means, for kernel as (@ and @5 it is slways possible
to obtain the iInequality

kC?>= /1Kj(t,<t) - K(t,r>]dtr ~
R

Therefore we may formulate the following

Lemma 1. For the integral equation () with the kernelCIU)
and fis" in the space X =Y = L1({O)the Inequality(lI3) |
true if the solution xjJ belongs to a ball in the space

L1(»).-

From this Lemma 1 we have the Corollary 1, If for the
solution xj- of integral equation (9*.) the Lemma 1 1is true,

than the solution xj- is stable in eense:
I/ aien (x (M - *,5M)) Ix(T0 - IdC\-£ .
But in a special case, if for solutionsXj equationCo®)
is always fulfilled, the inequality
XN x

which isequivalent with the inequalitymlX™l élixll , we
obtain simple form of stability in the norm sense in the space
L1 (R) , that is

/(X (@® - Xr(MD)IdE " £ .
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But in thia special cut, we may write the inequality (I0)in
the form
h* - *J1 1 A4- lly-1,* ¢ o —
V 1V r?
This result we may express in the
lnaxa 2. The solution x”~ of C9) belonging to the set
sO = BI»S is stable in sense of the Definition 1, that is

Illy - 7Sp*y implies [Ix - xf||4£
holds, if x,X”~£ So and TtJE S =
In conclusion we have the
Theorem 1. Let us suppose that the kernel K(t,X) of
the equation (6) fulfils the following conditions:

1° 1t is measurable in R X R

o] S _ S
< It is intenable in Z for every t £ R and it is
tbtegrable in t for every t¢ R.

3 The integral
Ne }(o») s I Kte.tr; dt A/ /c0>o
4 1
The kernel KCt,T)fc S, where S C. L1CR) is the subspace
of fast decreasing functions on R and it is positive and
has a monotonioal property.
3° It is given the ball

m>=L, mA',. 5% Dyi
uhere the constant jji is defined by the Integral in condi-
tion 3° and where the constant bO is a real number. Then
the problem of the solution of the Schwarzschild®"s integral
equation is well posed in Laurent Schwartz sense in the set
sO = BAS.
5. Vow we return to the Sohwarzschild®s integral equation in
the convolution form (G) =~
By application of equation (5) to the stars calculating
Process the kernel If stay be approximated by the exponential

function
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2
CF(M) = E e"a CM " Vo> w)

Ve my alao approximate the funotion o¢”~(m) on the right side
of equation (5) by an exponential function

N (H>y*-DbCF -~ - C.ej
Now the Soharzaohlld"a integral equation in the oonvolutlon
«
fora will be as following 2

/ E,-I(H-)Io " ~t (R)4RSEEF e 1>(~ lo) *

Putting y - yo = t, where y = t + yo we may write

-bt2
/ E ea”*“R+™o> O ,(R) dR c Eg—e‘
n 1
and putting R - yo =C ; dR m. dT
S e .-<_.*-»* p ,(t, N Lt = E<r .-b*2 .

Désignét [ 1CH + yQ) by [ o(1t} we obtain a simple fora
of the Schwarzsohild integral equation
2

2
/Eema<:t"X) 4 0(X) dt = Eg e"bt 09)
where the funotion [ Q(T) la unknown.
Obviously,, the kernel and given over funotion on the right

aide of the equation (19) both belong to the apace $ G-L £R).
It la useful to solve the integral equation (19) with help of
the Fourier tranaformation F(f} = £ e fltFH)dt on S.
Uaing the Fourier transformation F to both aide of equation
£19) we obtain

F(E E «-a(t- t"2A o(T)= F (E e"bt ) .

The Fourier transfoxz'med equation £19) givegj*an equation

E f f e~ ** FAO): N cz20n

from whence

r¢ho>- ¥i1 T = -
and after easy modification w2

F(
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Being to the Fourier image of A o the Inverse Fourier trane-
formation F-1 we obtain for the researched solution the
function a - ™
Ac - e 22)
E /TCa - b)
Of course, the researched solution A Q(t) given by fomiulaf£22)
ie bounded in the space SC1"(R) and belongs to the ball

"K I\ XjCr>|dTiBo]:s[XJSIM L1(R)- Bo] CZ3)

vhere

Before we pass to an ilustrative example of application the
Sohwarzsohild"s integral equation to founding the density
function D (r), we present shortly the used method in the stars
countings problem with help of which we will estimate the
Parameter of the kernel and the on the right side of
Sehwarzschlld’» equation.
h. The classical method of determination of the distribution
°f stars and interstellar dust from the magnitudes, colour
indices and speotral types of stars was described by R.J.
Ti-umpler and H.F. Veaver in their monograph. This method
enables to determine the interstellar extinction and the densi-
ty of stars Dfr) of different spectral class and luminosity
*oups.-

In our method, the function (*)- equation (5)
vere obtained from stellar counts in the Sagitta field Csee

C. Xwaniszewska, S. Grudzinska).
*e have for dm = Om5

d 1> 1 f \
A(@)- dm— «m<mef£)-*(m-£; - @5)
khere N(m) is the number of stars of apparent magnitude
*pg (photographio magnitude).

The results of stellar counts for seven regions of Sagitta

field k°xk® only for 167 stars of spectral type A0 are

fellowing :
\
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A (9) =6 A@,5) = kz
AG>,5) =19 AC2 ) =22
A (10) =11 A@2,5)= 15
A (10,5) =29 A(CRB) =

A (11) =30 A (13,5)= 1

The run of the A(m) with m in the solid angle of one square

3 9 10 n 12 13 14 m
Flg. 1 Stellar counts for stars of the sneotral type AO
:n the Sagitta field
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The obtained /N(w) curve may be calculated in the form

AM) = 2,6 e”0760m " 11°5)2 Ci6)
The luminosity function (FCM) for the sane speotral type
stars AO was calculated. We assume the absolute magnitude
values for AO starsfrom Aliena"s Sables. The standard
dispersion was taken from the McCuakey®e paper andR.
We obtained 2

@v) = 0,5 e“°’78(M - °*k> @n

5. For the kernel given by formula (27) we have Ea 0,5,
a a 0,78, a 0,4 and for the function <y on the right
side given by formula ~26" we have Ea2,6, b = 0,6 ,

pO a 11,5 « The Schwarzschild"a integral equation

/ 0,5 e"7"8 C*r)2f 0o (N d* = 2,6 e“0"6 **

has a solution given by formula C22)
0,78 0,60 .2

O (©)= 2»6° 0.78 e " 0,46- 0,60
°© 0,50 (0,78 -0,60)"
After performing the rule of calculation we obtain the
function 2
-0,26 t

[ 0(a 5,204 e

Now we must come back to the density function D£r). We have
Jo (TDdt =41(T+ po) dt aA”~RjdRa

~"D(C1l ecR )C2 e3cR dR a D (e°”™“a”™) ce3®R-a™drR a
D (e°Y) c e3°~rd/ = D Ce°y)c *CLe2°fd fa

a D(e°?)(ecT) 2c eCf dj a D(r) radr 2
NoCT)= 5»0i* e70,26u dT= 5,204 e-0"26 R dR a

a 5,204 e“0*26 R dR a Der) r2dr
-0,26 R2 dg
€ -J

r dr

-0,26(v+a)2

D(r) = 5,20%* = 5,204 e

Ampel .
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5,20k B~°>z6(G lox r « a>2 d™5 log r + a)
r2dr

5,20*1 e"0°26”™ lo* r + a)2 ¥ - ?_ log e =
5,20t e-0'26"5 loe r + a)2 . 5 log e

D(r)= 26,02 1i£S2- B"0726 <5 log r + a>
r

In our ilustratlve exaaple of application the Sohwarzschild a
equation to finding the density D(r) we have found for star«
of AO spectral type

DAOCr)= lit! B"07°26 C5 log r + a)2

r
Remarks. Further investigation of the density DAQ and

examples of application the Schwarzschild™a integral equation
to finding the density D(r) 1in other stellar fields will be
published in the next papers . The stability of tie used
approximation method will be considered also.
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0 POPRAWNYM ROZWIAZANIU ROWNANIA CALKOWEGO SCHWARZSCHILDA I
JEGO ZASTOSOWANIACH W ASTRONOMIN STATYSTYCZNEJ

Streszczenie
W tym artykule formuduje sie w oparciu o pojecie poprawnego
rozwigzania w sensie L. Schwartza warunki poprawnego rozwigaza-
nia rownania catkowego Schwarzschilda. Ustala sie klase jader.
Pokazuje sie, ze klasa ta nie jest pusta przy jadrze typu
krzywej gaussowskiej .
Otrzymane rezultaty stosuje sie do aproksymacji zliczen gwiazd.
Dalsze badania 1 rozwiniecia tej tematyki bedg kontynuowane
w nastepnych artykutach.



