Points of almost continuity of real multifunctions

Marek Jóźwiak Mariola Marciniak

In this article we consider the local property of almost continuity at a point of real multifunctions. The following question is interesting: Is it possible to define this local property and moreover to make sure that this property characterize the global almost continuity of a multifunction? We give such a characterization in this article.

Throughout the article we shall make use of the following notions and notations.

Consider the following topological properties that a multifunction F from one topological space X to another one Y may have:
\mathcal{C} : F is continuous,
$\mathcal{D}: F$ is a Darboux function iff for every connected subset C of X, the set $F(C)$ is a connected subset of Y.
$\mathcal{A C}: F$ is almost continuous function (in the sense of Stallings [5]) iff for every open set $G \subseteq X \times Y$ containing F there exists a continuous function $g: X \longrightarrow Y$ such that $g \subseteq G$.
One can see that if a multifunction F is $\mathcal{A C}$ then for every G, for every $x \in(a, b)$ and every $y \in F(x)$ there is a continuous function g such that $g \subseteq G$ and $g(x)=y$.

The multifunctions we consider are real multifunctions defined on an interval (open or closed) with connected values. Recall that for those multifunctions the following implications hold:

$$
\mathcal{C} \Rightarrow \mathcal{A C} \Rightarrow \mathcal{D}
$$

By $L(F, x), L^{+}(F, x), L^{-}(F, x)$ we shall denote the set of all limit points, the set of all right-hand sided limit points, the set of all left-hand sided limit points of the multifunction F at the point x, respectively.

Definition $1 A$ multifunction $F:(a, b) \longrightarrow \mathbb{R}$ is said to be almost continuous at a point $x \in(a, b)$ from the right-hand side if
(i) $F(x) \cap L^{+}(F, x) \neq \emptyset$,
(ii) there is a positive ε such that for arbitrary neighbourhood G of $F \mid[x, \infty)$, arbitrary $y \in\left(\lim _{t-x^{+}} \inf F(t), \lim _{t \rightarrow x^{+}} \sup F(t)\right)$, arbitrary neighbourhood U of the point (x, y) and each $t \in(x, x+\varepsilon)$ there exists a continuous function $g:[x, x+\varepsilon] \longrightarrow \mathbb{R}$ such that $g \subseteq G \cup U, g(x)=y$ and $g(t) \in F(t)$.

In the analogous manner we define a multifunction that is almost continuous at a point from the left-hand side. A multifunction is called almost continuous at a point iff it is almost continuous at that point from both sides. For a multifunction $F:[a, b] \longrightarrow \mathbb{R}$ we can say that it is almost continuous at the points a and b if it is so from the right-hand side at a and from the left-hand side at b.

One can easily observe that if a multifunction is continuous at a point from any side then it is almost continuous at that point from the same side.

Property 1 If $F:(a, b) \longrightarrow \mathbb{R}$ is almost continuous at a point x_{0}, then there is a positive ε such that for an arbitrary neighbourhood G of $F \mid[x, \infty)$, arbitrary $y \in\left(\lim _{t \rightarrow x^{+}} \inf F(t), \lim _{t \rightarrow x^{+}} \sup F(t)\right)$, arbitrary neighbourhood U of the point (x, y), arbitrary $t \in(x, x+\varepsilon)$ and arbitrary $z \in F(t)$ there exists a continuous function $g_{1}:[x, x+\varepsilon] \longrightarrow \mathbb{R}$ such that $g_{1} \subseteq G \cup U, g_{1}(x)=y$ and $g_{1}(t) \in F(t)$.

Theorem 1 If $F:(a, b) \longrightarrow \mathbb{R}$ is almost continuous, then it is almost continuous at every point of the interval (a, b).

Proof If F is continuous at a point x_{0} from the right-hand side then, of course, it is almost continuous at that point from the right-hand side.

If not, then $L^{+}\left(F, x_{0}\right)$ is a nondegenerate interval. Let y be an arbitrary point from the interval

$$
\left(\inf L^{+}\left(F, x_{0}\right), \sup L^{+}\left(F, x_{0}\right)\right)
$$

and G be an arbitrary neighbourhood of $F \mid\left[x_{0}, b\right), U$-arbitrary neighbourhood of $\left(x_{0}, y\right)$ and t-a point from $\left(x_{0}, b\right)$. There is a point of F contained in U, let it be $\left(x_{1}, y_{1}\right)$ where $y_{1} \in F\left(x_{1}\right)$. We can take that $x_{1}>x_{0}$. There is a function $g_{1}:\left[x_{0}, x_{1}\right] \longrightarrow \mathbb{R}$ such that
(a) g_{1} is continuous, $g_{1} \subseteq U$,
(b) $g_{1}\left(x_{0}\right)=y$ and $g_{1}\left(x_{1}\right)=y_{1}$.

The multifunction F is almost continuous in (a, b), then for its neighbourhood G and the point t from $\left[x_{1}, b\right)$ there is a function $g_{2}:\left[x_{1}, b\right) \rightarrow$ \mathbb{R} such that
(a') g_{2} is continuous, $g_{2} \subseteq G$,
(b') $g_{2}\left(x_{1}\right) \in F\left(x_{1}\right)$ and $g_{2}(t) \in F(t)$.
In this way the funcion $g:\left[x_{0}, b\right) \longrightarrow \mathbb{R}$ given by

$$
g(x)= \begin{cases}g_{1}(x) & \text { for } x \in\left[x_{0}, x_{1}\right] \\ g_{2}(x) & \text { for } x \in\left(x_{1}, b\right),\end{cases}
$$

is continuous and $g \subseteq G \cup U$. This proves that F is almost continuous at x_{0} from the right-hand side.

Similarly one can prove that F is also almost continuous at x_{0} from the left-hand side.

Theorem 2 If a multifunction $F:[a, b] \longrightarrow \mathbb{R}$ is almost continuous at every point of the interval $[a, b]$, then F is almost continuous in $[a, b]$.

Proof Let G be any neighbourhood of F. Let $x \in[a, b]$ and $z \in F(x)$. Consider two possibilities:

- x is a point of right-hand side continuity of F,
- x is not such point.

In each possibility there is $\delta_{1}>0$ such that for every $t_{1} \in\left(x, x+\delta_{1}\right)$ there exists a continuous function $g_{x, \delta_{1}, t_{1}}:\left[x, x+\delta_{1}\right] \longrightarrow \mathbb{R}$ fulfilling all the conditions:
$\left(\alpha_{1}\right) g_{x, \delta_{1}, t_{1}}(x)=z, \quad g_{x, \delta_{1}, t_{1}}\left(t_{1}\right)=z_{1}$,
$\left(\beta_{1}\right) g_{x, \delta_{1}, t_{1}} \subseteq G$.
Similarly there is $\delta_{2}>0$ such that for every $t_{2} \in\left(x-\delta_{2}, x\right)$ there exists a continuous function $g_{x, \delta_{2}, t_{2}}:\left[x-\delta_{2}, x\right] \longrightarrow \mathbb{R}$ fulfilling all the conditions:
$\left(\alpha_{2}\right) g_{x, \delta_{2}, t_{2}}(x)=z, \quad g_{x, \delta_{2}, t_{2}}\left(t_{2}\right)=z_{2}$,
$\left(\beta_{2}\right) g_{x, \delta_{2}, t_{2}} \subseteq G$.
Hence for every $x \in[a, b]$ there is a positive ε_{x} such that for every t_{1}, $t_{2} \in\left(x-\varepsilon_{x}, x+\varepsilon_{x}\right)$ for which $t_{1}<x<t_{2}$ there exists a continuous function $g_{x, \varepsilon_{x}, t_{1,2}}:\left[x-\varepsilon_{x}, x+\varepsilon_{x}\right] \longrightarrow \mathbb{R}$ fulfilling all the conditions
(α) $g_{x, \varepsilon_{x}, t_{1}, t_{2}}(x)=z, \quad g_{x, \varepsilon_{x}, t_{1}, t_{2}}\left(t_{i}\right)=z_{i}$ for $i=1,2$,
(β) $g_{x, \varepsilon_{x}, t_{1}, t_{2}} \subseteq G$.
The family $\left\{\left(x-\varepsilon_{x}, x+\varepsilon_{x}\right): x \in[a, b]\right\}$ is a cover of the interval $[a, b]$, so there exists a finite sequence of points $\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
x_{1}<x_{2}<\ldots<x_{n} \text { and }[a, b]=\bigcup_{i=1}^{n}\left(x_{i}-\varepsilon_{x_{i}}, x_{i}+\varepsilon_{x_{i}}\right) .
$$

We can assume that each interval $\left(x_{i}-\varepsilon_{x_{i}}, x_{i}+\varepsilon_{x_{i}}\right)$ has common points only with the preceding and subsequent intervals of that sequence.

Now let $t_{1} \in\left(x_{i}, x_{i}+\varepsilon_{x_{i}}\right) \cap\left(x_{i-1}-\varepsilon_{x_{i-1}}, x_{i-1}\right)$ and $t_{0}=a, t_{n}=b$ and $z_{i} \in F\left(t_{i}\right)$ for $i=1, \ldots, n$. Put $g(x)=g_{x_{i}, \epsilon_{x_{i}}, t_{i-1}, t_{i}}(x)$ for $x \in\left[t_{i-1}, t_{i}\right]$, $i=1, \ldots, n$. Then the function $g:[a, b] \longrightarrow \mathbb{R}$ is continuous and of course, $g \subseteq G$, what proves that F is almost continuous in $[a, b]$.

It is obvious that if $F:\left(a, a_{0}\right] \longrightarrow \mathbb{R}$ has the property that $F \|\left[a_{n}, a_{0}\right]$ is almost continuous, where $a_{n} \in\left(a, a_{0}\right)$ and $a_{n} \longrightarrow a$, then F is almost continuous in (a, a_{0}].

Now we are ready to state the following theorem.

Theorem 3 If $F:(a, b) \longrightarrow \mathbb{R}$ is almost continuous at every point of the interval (a, b), then it is almost continuous in (a, b).

For the points of almost continuity of a multifunction we can prove the analogue of the theorem on asymmetry.

Theorem 4 The set of all points of the interval (a, b), at which a multifunction $F:(a, b) \longrightarrow \mathbb{R}$ is almost continuous from exactly one side is at most countable.

Proof Let A be the set of asymmetry of almost continuity of a multifunction F. Let us denote by B the set of all points, at which F is almost continuous from the right-hand side and is not almost continuous from the left-hand side. By C we denote the set $A \backslash B$. Let

$$
\begin{gathered}
D_{1}=\left\{x \in(a, b): L^{+}(F, x) \neq L^{-}(F, x)\right\}, \\
D_{2}=\left\{x \in(a, b): F(x) \cap L^{+}(F, x) \cap L^{-}(F, x) \neq \emptyset\right\} \\
E=B \backslash\left(D_{1} \cup D_{2}\right)
\end{gathered}
$$

The sets D_{1}, D_{2} are countable [3]. We shall show that the set E is also countable. Let E_{n} be the set of all points $x_{0} \in E$ such that the diameter of the set $L\left(F, x_{0}\right)$ is greater than or equal to $\frac{1}{n}$ and such that for every neighbourhood G of $F \left\lvert\,\left[x_{0}, x_{0}+\frac{1}{n}\right]\right.$, every $t \in\left(x_{0}, x_{0}+\frac{1}{n}\right]$ and $z \in F(x)$, each y from the interval (inf $L^{+}\left(F, x_{0}\right)$, sup $L^{+}\left(F, x_{0}\right)$) and every neighbourhood U of $\left(x_{0}, y\right)$ there exists a continuous function $g:\left[x_{0}, x_{0}+\frac{1}{n}\right] \longrightarrow \mathbb{R}$ such that $g \subseteq G \cup U, g\left(x_{0}\right)=y$ and $g(t)=z$.
Now let $\left(x_{k}\right)$ be an increasing sequence of points from E_{n} converging to x_{0}. We shall show that $x_{0} \notin E_{n}$. Since $L\left(F, x_{k}\right)$, for $k \in \mathbb{N}$ has the diameter greater than or equal to $\frac{1}{n}$, then so has $L^{-}\left(F, x_{0}\right)$. There is x_{k} such that $0<x_{0}-x_{k}<\frac{1}{n}$.
Let $\varepsilon=x_{0}-x_{k}, y \in\left(\inf L^{-}\left(F, x_{0}\right), \sup L^{-}\left(F, x_{0}\right)\right)$ and U be a neighbourhood of $\left(x_{0}, y\right), t$ belong to $\left(x_{k}, x_{0}\right)$ and $z \in F(t)$. We can assume that

$$
\begin{gathered}
U=\left(x_{0}-\delta, x_{0}+\delta\right) \times(y-\delta, y+\delta) \\
t<x_{0}-\delta, \text { and } \\
(y-\delta, y+\delta) \subseteq\left(\inf L^{-}\left(F, x_{0}\right), \sup L^{-}\left(F, x_{0}\right)\right)
\end{gathered}
$$

For δ there are points $x^{\prime}, x^{\prime \prime}$ such that

$$
x^{\prime}<x^{\prime \prime}, x^{\prime \prime} \in\left(x_{0}-\delta, x_{0}\right)
$$

and

$$
F\left(x^{\prime}\right) \cap(y+\delta,+\infty) \neq \emptyset, F\left(x^{\prime \prime}\right) \cap(-\infty, y-\delta) \neq \emptyset
$$

Let G be an arbitrary neighbourhood of $F \mid\left[x_{k}, x_{0}\right]$ and

$$
H=\{(t, z): z \in F(t)\} .
$$

Of course there is an open square $U_{1} \times U_{2}$ such that $H \subset U_{1} \times U_{2} \subset G$. Put

$$
G^{\prime}=G \backslash\left(t \times\left(\mathbb{R} \backslash \mathrm{U}_{2}\right)\right) .
$$

Consider two possibilities:

- $F\left(x^{\prime}\right) \cap(-\infty, y+\delta) \neq \emptyset$. Since $\left\{\left(x^{\prime}, z^{\prime}\right): z \in F\left(x^{\prime}\right)\right\}$ is connected, then there is $z^{\prime} \in F\left(x^{\prime}\right)$ such that $\left(x^{\prime}, z^{\prime}\right) \in U$. Now let $G^{\prime \prime}=G^{\prime} \cup U$, $\bar{x}=x^{\prime}$. Then there exists a continuous function

$$
g:\left[x_{k}, x_{k}+\frac{1}{n}\right] \longrightarrow \mathbb{R}
$$

such that $g \subseteq G^{\prime \prime}, g(\bar{x})=z^{\prime}$.
$-F\left(x^{\prime}\right) \cap(-\infty, y+\delta)=\emptyset$. Put $G^{\prime \prime}=\left(G^{\prime} \cup U\right) \backslash\left(\left\{x^{\prime}\right\} \times(-\infty, y+\delta]\right)$. Of course, $G^{\prime \prime}$ is a neighbourhood of $F \mid\left[x_{k}, x_{0}\right]$ and $x^{\prime \prime}-x_{k}<\frac{1}{n}$ hence there is a continuous function $g:\left[x_{k}, x_{k}+\frac{1}{n}\right] \longrightarrow \mathbb{R}$ such that

$$
g \subseteq G^{\prime \prime}, g\left(x_{k}\right) \in F\left(x_{k}\right) \text { and } g\left(x^{\prime \prime}\right)=z^{\prime \prime}
$$

where $z^{\prime \prime} \in F\left(x^{\prime \prime}\right) \cap(-\infty, y-\delta)$. The function g, as a continuous one, cuts the square U and let \bar{x} be a point from ($x_{0}-\delta, x_{0}$) for which $g(\bar{x}) \in(y-\delta, y+\delta)$. Then the function $h:\left[x_{k}, x_{0}\right] \longrightarrow \mathbb{R}$ given by

$$
h(x)= \begin{cases}g(x) & \text { for } x \in\left[x_{k}, \bar{x}\right] \backslash U_{1} \\ z & \text { for } x=t \\ \text { linear } & \text { in each of the intervals } \overline{U_{1}},\left[\bar{x}, x_{0}\right]\end{cases}
$$

is continuous and contained in $G \cup U$. This means that F is almost continuous at x_{0} from the left-hand side, thus $x_{0} \notin E_{n}$.

Hence the set E_{n} contains no left-hand sided accumulation point of E_{n}, so it is countable.

Similarly, C is countable and so is A.
Theorem 5 The set of all points of almost continuity of an arbitrary multifunction is of type G_{δ}.

Proof Let $F:(a, b) \longrightarrow \mathbb{R}$ be an arbitrary multifunction. By $\mathcal{A}^{+}(F)$ $\left(\mathcal{A}^{-}(F)\right)$ we shall denote the set of all points of (a, b) at which F is almost continuous from the right-hand side (left-hand side), and $\mathcal{A}(F)=\mathcal{A}^{+}(F) \cap \mathcal{A}^{-}(F)$. Let A_{n} be the set of those points of $\mathcal{A}(F)$ for which the ε from Definition 1 is greater than $\frac{1}{n}$. We shall show that

$$
A_{n} \subseteq \operatorname{Int}\left(A_{n} \cup \mathcal{C}(F)\right)
$$

here $\mathcal{C}(F)$ denotes the set of all points of continuity of the function F.
Let $x_{0} \in A_{n}$ and $\delta=\varepsilon-\frac{1}{n}$. We shall prove that

$$
\left(x_{0}-\delta, x_{0}+\delta\right) \subseteq A_{n} \cup \mathcal{C}(F)
$$

If $x \in\left(x_{0}-\delta, x_{0}+\delta\right) \backslash \mathcal{C}(F)$ and, for example, $x_{0}<x, G$ is an arbitrary neighbourhood of $F, y \in(\inf L(F, x), \sup L(F, x))$ and U is a square neighbourhood of (x, y), then there are $t^{\prime}, t^{\prime \prime}$ such that

$$
t^{\prime}<x<t^{\prime \prime},\left(t^{\prime}, y^{\prime}\right) \in U \text { and }\left(t^{\prime \prime}, y^{\prime \prime}\right) \in U
$$

for $y^{\prime} \in F\left(t^{\prime}\right), y^{\prime \prime} \in F\left(t^{\prime \prime}\right)$.
Let $W=W_{1} \times W_{2} \subset G$ be a neighbourhood of $\left\{t^{\prime}\right\} \times F\left(t^{\prime}\right)$ and $V=$ $V_{1} \times V_{2} \subset G-$ a neighbourhood of $\left\{t^{\prime \prime}\right\} \times F\left(t^{\prime \prime}\right)$. Then

$$
G^{\prime}=(G \cup U) \backslash\left(\left(\left[t^{\prime} \times\left(\mathbb{R} \backslash \mathrm{U}_{2}\right)\right]\right) \cup\left(\left[t^{\prime \prime} \times\left(\mathbb{R} \backslash V_{2}\right)\right]\right)\right)
$$

is a neighbourhood of $F \mid\left[x_{0}, b\right]$ and there exists a continuous function g such that $g\left(x_{0}\right) \in F\left(x_{0}\right)$ and $g(t) \in F(t)$. The function g cuts the square W and V, hence there is a continuous function $h:\left[x, x_{0}+\varepsilon\right) \longrightarrow \mathbb{R}$ such that $h(x)=y, h(t) \in F(t)$ and $h \subseteq G^{\prime} \subseteq G \cup U$.

Similarly, for $t \in(x-\varepsilon, x)$ there exists a continuous function $h^{\prime}:[x-\varepsilon, x] \longrightarrow \mathbb{R}$ such that $h^{\prime} \subseteq G \cup U, h^{\prime}(x)=y$ and $h^{\prime}(t) \in F(t)$.

Thus if $x_{0} \in A_{n}$, then $x_{0} \in \operatorname{Int}\left(A_{n} \cup \mathcal{C}(F)\right)$.

Since $\mathcal{A}(F)=\bigcup_{n=1}^{\infty} A_{n} \cup \mathcal{C}(F)$ and

$$
\bigcup_{n=1}^{\infty} A_{n} \cup \mathcal{C}(F)=\bigcup_{n=1}^{\infty} \operatorname{Int}\left(A_{n} \cup \mathcal{C}(F)\right) \cup \mathcal{C}(F)
$$

then $\mathcal{A}(F)$ is of the type G_{δ}.
In the end of the article it is worth mentioning that Theorem 5 gives an exact characterization of the set of all points of almost continuity of a multifunction.

References

[1] Bruckner A. M., Ceder J. G., Darboux Continuity, Jber. Deutsch. Math. Ver. 67 (1965), 93-117.
[2] Garret B. D., Nelms D., Kellum K. R., Characterization of Connected Functions, ibid. 73 (1971), 131-137
[3] Jastrıębski J. M., Jędrzejewski J. M., Natkaniec T., Points of almost continuity of a real functions, Real Analysis Exchange 16 NO. 2 (1990-91) 415-420
[4] Lipiński J. S., On Darboux Points, Bull. Pol. Acad. Sci. 26 (1978), 869-873
[5] Stallings J., Fixed Point Theorem for Connectivity Maps, Fund. Math. 47 (1959), 249-263
[6] Young W. H., La Symmetrie de Structure des Fonctions de Variables Reeles, Bull. Sci. Math. 2-e Ser. 52 (1928)

WYŻSZA SZKOla PEDAGOGICZNA INSTYTUT MATEMATYKI

Chodkiewicza 30
85064 Bydgoszcz, Poland

