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ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ W BYDGOSZCZY 
Problemy Matematyczne 1988 z.10

WŁODZIMIERZ A.ŚLĘZAK 
WSP w Bydgoszczy

CONTINUOUS APPROXIMATIONS AND APPROXIMATE SELECTIONS POR MU1TI- 
PUNCTIONS WITH VAIUES IN S-CONTRACTIBIE SPACES

The notion of convexity was generalized by many different means 
/see /• Some of these notions are useful in certain ąuestions
of topology and mathematical analysis, eee for example [3, 10, 12,
16 - 20 , 22 - 24 ] . The present paper contains some ertensions
of existing theorems concerning contlnuous single-valued approxima- 
tions and approximate selections for convex - valued multifunctions 
[l, 2, 4-9, 13, 15 , 212  onto the case of multifunctions whose va- 
lues are S- convex subsets of a suitable S-contractible space. Por 
to make our arguments reasonable complete we will start with reca- 
lling some basie notions related to S-convexity already discussed 
in detail in papers J16-20 ] and [22-23 ] .
A set Y is S- linear if there is a map S : Y x x Y Y such
that:
/1 / S i a,0, b) = b and S ( a,l,b) = a for all (a,b)ć- Y x Y .
The pair (Y,S ) is then a convex prestructure in the sens of Gudder- 
Schroek ]10] . Por any subset B of a S-linear set Y define:

f 2 !  coS ( »  : = {D C  Y : B C S (_ B x [0,l] x 3>) C  D j ,
Y y

Por B = 0 we have coS 0 = 0 . A map coS : 2 -> 2 defined by /2/
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is a convex prehull on Y , i.e. the following two conditions /3/ 
and /4/ are satisfied:

/3/ B c c o S ( B )  for a n y B C Y  ,

/4/ B C D  ^>coS(B} coS(D) for any B, D Y .

Thus the family:

/5 / C : » |B C  Y : B = coS B C. 2 1
determined by the convex prehull /2/ is a generalized convexity 
on Y. This means that:

/6/ Y £  C and

'1/ ̂  : j f j) c: c -> i Bj e  c .. I )

3 ś- J
The elements of /5/’ are called S-convex subsets of (Y, S ) and C 
is called S-convexity. Note that in generał coS c cjS / coS 
/see exaraple 2 on p .17 in \_22 J /.
If Y is in addition endowed with some topological structure T, 
then (Y,T,S) will be called S-contractible, if for each a t Y 
/8/ S ^a, ♦. , • ) : [̂ 0,1 _] xY —'* Y is a homotopy joining the
identity S ^a,0, •) = idy with a constant map S (a,l, •) =
consta. In other words for every a Y the map h& : 1 0,1 ’ -J> C 
; (Y, Y ) defined by:

/B/ '"O.l1 i t  ha (t)ĆC ;Y,Y ) , where

/9/ Y B b  t— > ha ( t V b ^  : =  S ^ a , t , b U ‘Y

is continuous, The space C (Y,Y) of all continuous transforma- 
tions of the space Y in IS f is assumed to be erjuiped with the 
ouasi-compact ooen topology.
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An S- contracible space fY.T.s) is of type I ,/cf. [171 . df. 3 
on p. 596/ if for any y <= Y and any neighbourhood V of y there 
exists a neighbourhood N of y such that coS (n ) c i  . A space 
(Y,T,s) is of type O if it is S-contractible and fory any B c  I 
and any neighbourhood V of the closure of coS B there exists a 
neighbourhood N of B for which coS (N)c V /cf. [18] , df. 2.8 
on p. 784/.
Let us suppose that the topology T is metrisable by a distance 
function ds Y x Y - » R +. By K (b, r) : - ^ jr 6' T : d (b,y ) < r^y
we denote the open bali centered at b £  Y and of radius r > 0. 
Similarly, for any subset B C  Y the eign K (B,r) will denote 
the set:

/10/ K (B,r ): - (J (b,r) : b f  B \ .

A metric S-contractible space ^Y#d,S ) is called to be uniformly 
of type 0 for balls if

/11! ^  ^  ^  00S K (b,t(0)<: K (cos B,
£ > O r (Ł )  > 0 B C Y V V 7

ind Y is of type I for this S.
Observe that each convex subset Y of any linear normed space is 
oniforały of type 0 if we define:

/12/ S ^a,tfb ) : » t • a + ^ 1 - t ) » b £ Y ,

fithout loss of generality we can on the strength of /4/ always 
assume in /11/ that the following inequality holds:

/13/ 0 < r (£) ^  t

et (X»T^ ) Be another topological space and let us consider a 
ultifunction P;X^>Y , i.e. a function whose values are nonempty
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subsets of Y. F is called lower semicontinuous /briefly lsc/ at 
a point x Q £  X iff whenever W ie an open set in Y with the pro- 
perty that P (x ) O W ^ 0 , there exists a neighbourhood U of
xQ such that F (x)r\ W p 0 for every x £■ U » U ( xQ ) . P is callt
alinost lower semicontinuous /alsc/ at xQ (  see jjB] , df. 2.1 on 
p. 186^ iff for each positive real number £ > 0 , there exists a 
neighbourhood U * U ( x ) of xQ such that:

/14/ U  (P (x) #fc) : x ć- D (xQ ) }  0 0 .

P is called lower semicontinuous /resp. almost lower semicontinu
ous/ if it is lsc /resp. alsc/ at each point x Q of X.
A selector /resp. £ - approximate selector / for an P is a sin
gle Talued function f : X-?-Y such that f(x)6-F ( x )  / resp.
f {x)fc K (p (x ) , ł ) for every x in X. Observe that every selec
tor ia an £ - approximate selector, but the converse is false 
in generał. It is useful for comparison purposes to mention here 
the L.Pasicki analogue of celebrated continuous selection theorem 
of E, Michael:

PROPOSITION 0 /L.Pasicki/. Let X be a paracompact topological 
space and fY,d,Sj an S-contractible metric space uniformly of ty
pe 0 for balls. Suppose that F:X -?Y is a multifunction with 
S-convex complete values /resp. S-convex values only/. If ? ie 
lower semicontinuous, then F admits a continuous selector /resp. 
a continuous ^ - approximate selector for each fc > 0 / .
While lower semicontinuity of P with complete S-convex values is 
sufficient for the existence of a continuous selector, it is in 
generał not necessary for P to admit either a continuous selec
tor or even a continuous c - approximate selector.
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In case where Y ia a normed linear space, Deutsch and Konderov 
^[8] , thm. 2.4 on p. 18?} have characterized almost lower se- 
micontinuity and in the process showed that it is a necessary 
condition for the ezistence of a continuous selector. Our first 
proposition is an eztension into S-contractihle spaces of Deutsch- 
Kenderow theorem characterizing those multifunctions with S-convex 
images which haxe continuous £ - approiimate selectors for every 
6 >  0 .

PROPOSITION 1. Let (J.T^) be a paracompact spaoe and let (Y ,d ,sJ 
be a metric S-contractible space uniformly of type 0 for balls.
Let Ps i — >Y be a multifunction with S-convex values. Then P is 
almost lower semicontinuous if and only if for each £ >  0, P has 
continuous £ - approximate selector,

PROOF: Neeessitys Suppose P is alsc and let an arbitrary positive 
number £ > 0  be given. Take r(e") satisfying /11 / and /13/, In 
compliance with /14/ for each xQ £  X there exists an open neig
hbourhood U(xQ ) of xQ such that

/15/ (p(x) , r(e) : x en(xD)J + fi .

Since (^X,T^) was paracompact, the open cover (x) s x <= Xj- of X 
has a locally finite refinement : j ć- Ĵ j where J is a set of 
indices. We can assume, without loss of generality, that the lnde- 
xing set J is well ordered by some total order relation Ąc JxJ.
Por each j £  J choose x.j such that C  U (x^ ) . Dsing 
paracompactness, we can choose a partition of unity |p^ : j C jjf 
subordonated to : J t  J . That is, each function
Pj : X f 0,11 is T^ - continuous,
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x 6 X  j ^  J 

Por each x £  X define:

/17/ J (x) : - | j £ J  : Pj(x) ^ O j 1 3;,̂. J2,...Jn ^

where n ■ n(x) is dependent of x and j1 J2 -C * Put:

/18/ ck(x) s - Pk (x) / maxjp.j(x): j £J(x)j | kej(x).

where y is an arhitrary fixed element of the image ? (x )C  Y.
It is easily seen that there always exists an k £ j  (x) such that 
ck (x) - 1, then S (yk , ek (x) , y)- yk for y <£ Y .
Then our definition /19/ is correct and f(x) is independent of 
the chooise of y.
Giyen any xQ£  X , there is a neighbourhood 0 ( x Q ) which inter- 
sects only finitely many of the so xQ ć  for only a finite 
set of indices J (x0] c J  . We have:

Conseąuently for all x € 0  (x0 ) we essentially take in /19/ those 
y^t for which J G  J (x0 ) • Observe that the function:

121/ 0(xo) ^  xt» g ^ r )  :« s (yjnt cjnC*l. $,)£* . » - n(x0 )

Obyiously each : X*^>[0,l} is continuous. Por each j ć- J let 
us select y^e Cx ) » x(t)) : x & ^ and define f : X Y
by a formuła:

/19/ f(x) : - S(y3i , c ^  (x) , S ( y ^  , c ^  (x) ,

a  ̂..., s[y3^ , c ^  (x) , y) ... ) 6 Y
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is continuous on 0(xQ^. For i « 1,2, ..., n-1 let us define recur- 
sively:

1221 0(xo^ x ł - > g n_1Cx) : - S{ji , c3 Cx), (x.)) £  Y .
n-l n-l

Since y. are constant on Q(x J) and S(y. : [ o , l ] x  Y->Y
Jn-i ° v Jn-i y

is jointly continuous as a homotopy, we infer that each g , ^  is
continuous on o f  xQ') being a superposition of continuous maps.
Thus f [ 0 (xo) ■ is continuous on 0(xQ). Since 0 (xQ ) : x Q (- X *j

is an open covering of X, we infer that /19/ is continuous on X.
Observe that:

/23/ ^  f (x) f- coS K(F , r ^ ) )  .

In fact, choose any subset D belonging to the family under the 
sign of intersection in formuła /2/, where B : - r^d) .
Observe that for i » 1,2,..., n-1 we have recursi^ely:

/24/ gn_1 vx) - S x "0,1] x dK. D

for a function gn-i defined by /22/, because of Sn_i+i(x )'-~ 13 811(1 
y^ feB. By S:̂yk j c^ (x), y)« yk for some kć-J( x) the choice of

y tr F(x) is unessential, even if D. Since B was arbitrary, this 
yields:

/25/ g1 (x^ ■ f (xj£coS B ■ coS K (f  ( x ) , r ^ i ) .

Bearing in mind that F < x )  ■ coS F \ x ) , by /11 / we obtain:

/26/ f ^x>coS K (f (x), r^i)c' F {coS F (x) , O  - K iF ix) t ) .  

Thus:
^27/ dist ^f (x\ , F ;xM: - inf < d (f (x), y'): y( F (x j | <   ̂

and f is a desired continuous *- approximate selector for our
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multifunction F.
Sufficiency: Fix (->0 and x Q &- X. Aasume that for each *? >o 
there ie an f  C (X,Y^) such that f^ £ x ) ^ K  (f (£) ,o') • Take 
f: ■ t,j for o ■ źr /2 and choose a neighbourhood U (xQ ) of x0 
such that d (f (xQ ) , f (x))^S/2 for all x ć O  . Such U Cx0)
exists sińce f was continuous. Hence

t ^ t ) (i ) > £ /2 J CE (» & ) • « - )  •

In fact, if y€F(x^ is such that d^f(x), y)< «'/2 then by the
triangle ineąuality we have:

/29/ d (f y)iśd ff (xQ > , f ( x ) W  d(ftx^, y)>/ 2 + i / 2  - 1‘

bo that dist ( f(xQ) , F(x)j„t • Thus /14/ holds and F is alsc at 
xQ . Since xQi~ X was arbitrary, F is alsc as reąuired and the
proof of Proposition 1 is completed.e
At the present let us suppose that the topology T1 on X is metri- 
zable by a distance function d-j. For computational simplicity assume 
the Cartesian product X x Y to be endowed with the box metric d2 :

/30/ d2 ((X1 , y ^  , (x2 » y2'0 “ max^ di(xi» x2 ) * d ^y1 * y2 ^
A function f : X -^Y is called t - approximation for multifunction 
F: X -> Y if:

/31 / H ^ ( G r  f ,  O r ? ) ^ t ,

where the separation H is defined on X x Y by formuła:

/32/ H (m ,N^ : * sup inf d^ (m, n ) ; M,B X x Y
n & N  m <r M 

and the graph of F is defined as usualy by:

/33/ Gr F : « ̂  (x,y! - X x Y : y F { x )  V .
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Each g— approximate selector for F ls simultaneously Its f-appr 
ximation, hut the converse is not true in generał. Consider, as a 
example, the multifunction F: R — given hy the formuła:

/34/ |sgn x} for x ^ 0
F (x) : * >

/v L “1 » 1 ] for x - O

It is impossihle to inscrihe into the graph of /34/ a single-va- 
lued continuous function, i.e. there is no continuous selector 
for F.
Even more, it is also impossihle to find a seąuence fn of conti
nuous single-valued functions such that:

/35/ dist fn (x) , F 0

uniformly /or almost uniformly/ on R as n tends to infinity.
In /35/ the sign dist is defined hy formuła l2 . l l , This example 
/34/ shows that in the theory of multifunctions neither the simp- 
le lnscription concept nor the traditional approximation princip
ia may lead to generał and satisfactory result. One feels that 
here some more sophisticated principle is needed. It is easily 
seen that it is possihle to find a seąuence fn of continuous sin
gle valued functions such that the seąuence Gr fnC X  x I of their 
graphs converges to the graph /33/ of the multifunction F, i, e. 
H * ^ G r  fn , Gr ?J tends to zero as n tends to infinity /cf. [4-7, 

13, 15, 2l]/.
Ohseree that /34/ fails to he alsc at xQ » 0 and thus, in compli- 
ance with Proposition 1 admits no continuous £ - approximate sele
ctor for sufficiently smali numhers O 0 .  Following ■ 5 ] , df, 1.7 

p. 13 , a multifunction F:X~> Y is called weakly h r - upper 
semicontinuous /hriefly weakly h^ - usc/ at xQ 6  I if
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/36/ / \  / \  V  \  / x h(x(x)t F(Xi))
n?0 0*5*0 x1fcK(x0,ol x t  k (x q ,s )

Where similarly as in /32/ the separation is defined hy:

/37/ h*(b,d) = supjdist (b, d) : h C- B )

and the sign dist is erplained hy /27/. Ohserve that in generał 
h* (B,D^ differs from h^ D . B ^  . A multifunction F:X— ^Y is called 
weakly h*̂  - upper semicontinuous if it is weakly h+ - usc at each 
point xQ ćrX. F : X^Y is called h* - usc iff:

A \ j ^

/ 3 8 / x0̂ X  £ > 0  $ > 0  x.; K(x0,.S) h^(FCx) , P(xo)V'Ć .

If x1 ■ xQ in /36/ the definition of weakly hi* -upper semicontinui-
* * ty reduces to that of an h -upper semicontinuity. Wiile each h -usc

multifunction is weakly h * - usc, the conyerse is not true in gene-
* *-rai. In the ahhreviation " h -usc ", h is written to emphasize 

the role of the Pompeiu-Hausdorff /generalized/ separation /37/.
If card F(x) *» 1 for all x c  X, i.e. F(x) (x)V is single valued 
then F is h -usc /lsc, alsc, weakly h -usc / if and only if f is 
continuous. Following [13'\ , p. 72 define:

/39/ D^x,e) :-) : V  / \  h (f(x^,
L x.j£ x 2 £

^  f (k  (x,H) c  k (f  (*,) , O  }
x ^  K(x,S)

where for a subset A C X  we define the image as:

/40/ F(A) : -U$F£a) ! A K ' *  .
Ohserye that D (:x,i> is certainly nonempty if F is weakly h -usc
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and if 0. The function : X x R+-^ R+ defined by;

/Ą^/ £(x,e): « sup ( p (x, O )
is called in (.'13J the modulus of upper semlcontinuity of the multi
function F. If F : X^>Y is weakly h^ -usc then the modulus of upp
er semlcontinuity /4-1 / is positiye and lower semicontinuous with 
respect to the first yariable x / see f 5 j , lemma 3.2 on p. 20, 
cf, also a lemma on p. 72 in £13 [ / .

PROPOSITION 2. Let (X, be a metric space and ( Y,d,sj a me-
tric S-contractible space uniformly of type 0 for balls. Let F:X>Y

'if'be a weakly h -upper semicontinuous multifunction with S-convex 
▼alues, Then for every t > 0  there exists a continuous £ -approxi-
mation for ?, i.e, a single valued mapping f <£ C ( x ,y ) such that
the inequality /31/ is fulfilled. Horeoyer;

/42/ f(x) : = jf(x) « coS F ( x ) : - coS ( O  F(x)jCY.
■ x * X '

PROOF; For a given t > 0 ,  we define a n.ul t i function G:X— ^ Y  by put- 
tings

/43/ 0 ( x )  ; - * ( * { >  ,f(x, r (S/ż))))

for every X , where r « r[£ /2) is taken from /11/, We claim
that for every y in Y the fiber;

/44/ G'1 [y )  s I : y €  F (x ) |
is open in X, i.e, that multifunction /43/ is strongly lower semi
continuous, Indeed, if xQ belongs to the fiber /44/ then:

/45/ y <ć’G /x 0 . f (k ( x q ,i(x0 , rV'i , r - r /2 > .

This means that yc-F(x,.^for certain x1 belonging to the bali
¥ x , x0, r i /2'^ . By the lower semlcontinuity cf the func-
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tion X.^x M »  ó ( x , r )  6  R+ , there exists an ^ > 0  such that for 
all x£ X (I0»7>) w® kave fe X (x, <TCx,r)) , r - r(*/2), in
accordance with /39/, /41/ łdiich means that for all such points x
we have y £ G (x) . Since xQć Gr*-1 ( y) was arbitrary, this means 
that the fiber /44/ is open in X,
The familylo”1 £y) j y & f j  is an open covering of the space X,
Since eyery aetric space X is paracompact, there exists a locally 
finite refinement s J j of this covering, Now, let 
|Pj 5 3 € be a partition of unity subordonated to this refine
ment, so that /16/ holds, Choose for erery J a point y^ ę Y 
such that C  Q~1 ( Yj) and define f:X ->Y by a formuła /19/
where c^ and J(x) are defined by /18/ and /17/ respectively. We 
can prove in exactly the same manner as in the proof of Proposi
tion 1 that the function f is continuous on X. Por an arbitrary 
x in X» f£x) is an S-convex combination of a finite number of 
y^ such that:

/46/ yj£ F (X j )c  G(x) , X j C - x ( x , ^  , r}) ,

Pix now x arbitrary. By the definition /43/ of G, there exlsts a 
point x^ such that:

/47/ d1 (x, x1)<d(x, r ( £ f z ) ) and

/48/ G[x^ » P ^X(x , <f(x,r)^ C. K ( P(x1 ) , r ) vdiere r ■ r(£/2 
and /39/ is utilized. Since P(x^) ■ coS P (x^ ) we ha-ve by /46/, 
/48/ and /11/ that:

/49/ f(x)e coS G(x)ccos K(P(x1'), r)c X (coS F(x.,) t*-/2_) -

- k ( ? ( x 1) , t / 2 )  .

Thus, arguing similarly as in /29/ we obtain:
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/50/ dist (f(x) ,F (x1) ) < £ /  2 .

Subaeąuently we have by Yirtue of ttae triangle ineąualltys 

/51 / Diat( (x, 1 (x\ ) , (łr F js « inf | d 2 ((ii f (*)), (u,v)) :

0 , v ) e  Gr r]< d2 ((i, f(x)j , (̂ X1 , f(x)jj+ Diet (

(*1 » *(*). {*1̂ 5 * P (x1)]^d2 ((x. f (x), (x, , f (x))| +

diat^f(x) , P ( x j ) )  ^(x»r^ ♦ &  / 2 < r  ♦ 6 / 2 -ś 6/2 +

fc/2 - e  ,

wfaere the inequalitłes /47/, /50/, /39/ and /13/ are adeouately 
taken into conslderatioc. Since x was arbitrary the proof of /31/ 
ia completed. The inclusion /42/ foliowa from /46/ in a manner 
appearing in the proof of formuła /26/. That ends the proof.

PROPOSITIOH 3. Let X and Y be the aame as in Propoaition 2 and
let F:X-?>Y be an upper aemicontinuous multifunction with closed
▼aluea. If f s X - > Y  is a aeouence of £_ t approximationa

fcn a
for F, where £ create a seąuence tending to zero as n tends to
infinity, then for every converging seąuence 7^ of points of the
domaine X satisfying the eąuality lim f CxJ) • y we have

fen 7
7° € ” ( *n ) •
PROOF: Thia foliowa immediately from Theorem 1.5*3 announced in a 
aurvey [25] and from our PropoBition 2.

For more informations about continuous approzimationa for multi- 
functions the reader ia refered to papers [1,2, 4-9, 13,15,21,26,27j 
and to soYiet works of Y.G.Borlsovich, A.D.MyBhkia, B.D.Gelman, 
Y.E.Glicklich and othera, carefuly aurveyed in [25] . The role of 
approximations in the theory of multifunctions was emphasized in
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| 26 '. The author wishes to express his thanks to Janina Ewert for 
her critical remarks.
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CIĄGŁE APROKSYMACJE I APROKSYMATYWNE SELEKTORY DLA MULTIFUNKCJI 
0 WARTOŚCIACH W PRZESTRZENIACH S - ŚCI^GALNYCH

Streszczenie

W pracy sformułowano warunki przy których multifunkcja przyjmują
ca S-wypukłe wartości we wprowadzonej przez L.Pasickiego prze
strzeni S-ściągalnej odpowiedniego typu posiada dla każdej £ > 0  
ciągły £ -aproksymatywny selektor oraz odpowiednio ciągłą jedno- 
wartościową £. -aproksymację. Uzyskane wyniki rozszerzają zakres 
stosowalności twierdzeń znanych w przypadku multifunkcji przyjmu
jących wartości wypukłe w lokalnie wypukłych przestrzeniach linio- 
wo-metrycznych wskazując Jednocześnie na nieco inne zastosowania 
S-wypukłości w teorii multifunkcji niż w pracach £17-20 1 1(22-23!.


