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ON FUNCTIONS WITH ALMOST EVERYWHERE CONTINUOUS, APPROXIMATEIY
CONTINUOUS BECTIONS

The present article Is devotedto giving a Solutions of a problem
published by Z.Grande in [5] < p-H and related problems 6 a* on
p-17 , 6c on p.18, 7a on p.19, 12 on p.-22 from collection of open
problems f6 < Ali problems under consideration concem real func-
tions defined on the piane, T: R2—> R, such that all the sectlons
x - F D :R>»R ,x £ Rand fy :«.f/.,y):R —>R,
y ¢ R are approrimately continuous and/or almost every*diere conti-
nuous.
We give some preliminaries about various "fine" typologies to be
used iIn the seguel. A common feature of various kinds of metric
denslty that have hitherto been etudled /see 224 ,11 , 19, 9 ,
10}/ is that the density of a set E at a point z t R" is the li-
mit as n tends to infinity of the mean density of E in Cn, where
is any seguence of sets convergent to z, belonging

to some family fired in advance. We recall /of.[2L , 9.7/ that a

zo<=R« if z04 T) En and diam En 0 as n tends to infinity
n-1
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The parameter of regularity of a bounded measurable set E of po-
sitlve diameter is the number p (e): = sgp | E&) /7 @) for
cnbes J containing ET roiere denotes Lebesgue aeasure on the
Euclidean space Ru - A conyergent seguence of measurable sets En

is regular if there exists a positive constant A >0 such that
p@) A 0 forall n£ N . Let us mention that an interval

in R 1s understood to have sides parallel to axes of coordinates
and a cuhe is an interval wlth egual non-zero sides.

Let A be a family of convergent seguences of measurable sets and
for each z € Rx let A (2 denote the subfamily consisting of

those that converge to z. A measurable set E is said to have a
density d (-A,z, E) at z relative to A 1f A(z) is noneopty
and (ChnE) / Lcn) d(A, z, E) as n—* for every
seguence (Cn) N ds eaeY to see that if A is the
family of all convergent seguences of cubes /resp. non-degenerate in-
tervals/ then d]A ,z, E)m 1 if and only if z is an ordinary /resp.
strong/ density point of E.

The Lebesgue measure induces on A a topology called the A -den-
sity topology Td / see [9 , 10] /. A set is open in this topology
if it is measurable and each of its points is a point of A-den-
sity one of the set. The A - density topology is known to be a com-
pletely tegular, Hausdorff non-normal topology. Moreoyer a function
f:RIc-~ R is ordinarily /resp.strongly/ approximately continuous
/cf.J19 ,11 , 24 , 28]/ if and only if it is continuous with ree-
pect to the _A - density topology for a suitable family -A .

Let T5.g. be a collection of all subsets UC for vviich U¢ TA

and U m GU Z where G is open /in the Euclidean topology on R /
and m (z)- 0 . It can be proved / see,[i8] / that is a



topology on Rk lying between the Euclidean topology Tg and T(‘}L_ -
We have /cf. £13 , 14 Where k»l / that:

// ~.e. + C .dA - °k(U"N- “*F<>*
idiere Int U denotes the Euclidean interior of U. Por further ge-
neralization using lifting theory see jej ,
T-J\~ is a completely regular Hausdorff non-normal topology on R
and the class of -"j_-approximately continuous functions whose points
of Tg - dicontinuity form a set of m - measure zero is precisely
the collection of T ~ continuous functions. Moreover is
the coarsest topology T making each such mk - almost everywhere
continuous, approrimately continuous function T - continuous.
Let TFA be the collection of all sets which are the union of some
subfamily of the family %r,(Rk)n G(?(Rk) T,, - The collection
forms a topology which is the coarsest topology making each A -
—-approximately differentiable function continuous /see £13J for
the case k-1 /. We have TaC Tg.gg c | . Wwith proper inclu-

sions. Particular cases of the following auziliary proposition are

already knowns

PROPOSITION 11°. Let £x, t) be an arbitrary topological space and
(@, Tg) the unit interval endowed with the Euclidean topology.
Assume that the function f: X x 1-"R is such that all its Y-sec-
tions 7 : I-"R, yxr 1 are T- continuous and all X- sections
t™ - I-*R are increasing. If a section fu : 1-> R iIs continuous
at some point £ 1 /and increasing/ then f is T ® Te - continu-

ous at the point (u, X x L.

Proof: Let £>0 be a fixed but arbitrary positive real num-

ber. Since fu is continuous at v, there is a clored bali
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K (v,r)c K (mv,2r)ci such that:

72/ (f (u,v) - FQu,y)yr 72 for all yEK(v,r).
_ - TAT e -
Since the sections f and ¥ are both continuous at uf X,

there are two open neighbourhoods Ul and U2 of this point u such

that:

/3/ |f (xtv+r)- fQu , vtr)(<£/2for all xtU, , and

/4/  |f L Y-r)- fQ , Y-r,)j<£/2 for all x€UXx

Obserre that U: * 0 Uj 1is an open neighbourhood of u6 X for
which the inegualities /4/ und /3/ are satisfied simultaneously.
By Yirtue of the assumed monotonicity of all sections fx we have
the ineguality:

/5/ f XVv-rj*f Lyj*"f (x ,v+t) ; x G X .

Porx £D m Ujr\U2 and y € K (v,r) we have by the triangle ine-
guality from /3/ and /2/ the subseguent relation:

75/ | (x, Y+r) - F U, WFS (F (x, v+r ) - t(u, v+r)j +

+ |fQu, Y+r) - FTELEu,y)/<E/2 & Lt/2< £ ,

Similarly from /4/ and /2/ we obtain:

N (F X Y1) = F@DEEFE > v-r) - T U,v-D]+[F (u,Y-r) -
-f U, VJ<E/2 & T-/2 - £ =

Por (x,¥)E£ U x X (v,r ) the above ineagualities yield in the presen-

ce of /5/:
/8/ /< F X, Y-r) -F W@ < FfFy) - FfF,v)<T (z, vtr )-
fQ, t]< +£ and

/9/ <6< f(u,v) - f(u, v+r)$ f(u,Y) - tOGPDE F (u.y) - F(u, v-rn<n
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Combining /8/ and /9/ and using /6/ and /7/ we obtain imaedia-
tely:
710/ FF (X,y) - Fru )] for (X,y)™NU * K (y,r).

Since (", 1a an open neighbourhood of a point (u,v) iIn the
space Xx 1| endowed with the produet topology T & T . we infer
that /u,v/ is a continuity point of f. The proof is thereby
achieved. The subseguent proposition gives an affiraati”e answer

to the question2” published by Z.Grande in*"5jFf p.14 =

PROPOSITION 2, Let T s I2 R be a function whose all X-sections
f and Y - sectlons fy are approxiaately continuous and - al-
most everywfaere continuous. Then there is a seguence T : R2—?> R
of ordinarily approximately continuous and m2 - alaost everywfaere

continuous functions pointwise convergent to a given function T.

P r oo fj We may assume without any loss of generallty that our
function f is bounded and positive since in the opposite cas the
superposition h«f may be considered, where hj R~3>(0,2j is an in-

creasing homeoaorphism given for erample by the formuda:

o ) exp x - exp (-X)
/11/ Ri>1i-"h[i) w1 +thxm 1l — (0,2
exp X exp (-x)

Let us introduce the auxiliary function:
y
112/ 12X, ¥)*-sg (X,y) s - 5o f (x»u) du €C°»2]

Observe that the x - sections gx of the function /12/ are conti-

nuous and icreasing for all x 6 I. Next define the set:
/137 A; -jJ(x,y) £ 12 - ¥ is continuous at the point x G 1

and T 1is continuous at the point y £ 1I[.
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All Y- sections Ay : « M x€1 J (X,y)$ Ar-of the set /13/ are
of fuli measure because of the assumptlon that all f are m" -
almost everywhere continuous. Moreover the set A is m2 - measurab-
le being a intersection of the countable family of sets open in

the topology:
/147 1Q - "jnci2 : U is m2 - measurable and all sections Ux,
Uy are open in the Suclidean topology for any (x,y)el2j-.

Por topologies of this kind see ,L7] .

The functions continuous on (I , T ) are exactly those separately
continuous on the sauare I2 and 1t is well - known that te setof
continuity points of a function defined onan arbitrary topologi-
cal space is a GJ subset of this space. Then by virtue of famous
Pubini theorem we have m2(A )" m2 )* 1 80 "hat also the sec-
tions A o (X,y)eA™ c]y£" 11 x is a continuity point of
the section fujare of fuli measure my for m, - almost all pointa x
belonging to 1.

Subseguently let us define the set:

/15/ B - * |, YWE 12 : g7 iIs continuousat Xj .

In compliance with the theorem 6.1 on page 306 from (22] the
section gy : 1-?(0,2), y~l 1is continuous at all points x £ 1
for ddiich m - almost all sections fy are continuous at xX. Therefo-
re ™ (By)=1 for y€ 1l so that we get that the Y - sections of
the function g are - almost everywhere continuous. Any point
(*»y)¢ 12 with the property that the section gz 1is continuous at
y and iIncreasing and simultaneously the section gy iIs continuous
at x is by virtue of Proposition 1 a point of jcint continuity of

g- Applying once again Pubini theorem we conclude that the set of
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Joint continuity points of g is of fuli piane measure. Thus we ha-
we already proved that g is m2 - al*“ost everywhere continuous. To
aee that g is ordinarily approximately continuous on the sguare
I firstly let us observe that:
/16/ Lim appr g (w,y) :- - 1im g(rty) - g(xty)

v vV =X

\Y

where E(x) is a subset of 1 /called sometimes a path leading to x/
such that x is a density point and an accumulation point of E (X))
with the property that the restriction fy ( E(x} is continuous
at x. Such path exists by virtue of the assumed approximate continul-
ty of the sections %, vy & L.
To prove the eguality /\6/ ist suffices to verify that”:

mCit sfg (X,y) - g(t,y)i<£ 4 r\[x-h, _ x+hj 1
m »

2h h O

But this follows from the factthat fu is approximately continuous:

. 1 g( X+h
1m — — /v,u) dx = f /x,u) and from
h*i0 2h x_h inclusion

{r** lg *-y) - g7t y)<£ *JS>-(J': t: g | fx.w) - F(U)] du<£ j
It shows the approximate continuity of all sections g".

"Pecializing thetopology T inProposition1 to be the density to-
>ology Td on theinterval |1 wedoduce thatg is ™ <) Tg - conti-
dlous on the sguare 1 . But each SDTe - open set is open in

the density topology on the sguare 1™ with respect to the ordinary

dtfferentiation base. Thus the function g is ordinarily approxima-
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tely continuous. Combining this fact with the proved ~ almost
eTerythiere continuity of g we obtain that g is $J~i - continuo-
us on 12. (-A-0 1is regularj .

let hn, n-1,2,... be a Ffized seguence of positive real numbers

tending to zero as n tends to infinity. Define the seguence of

functions:

/17/  i2s Cx»y): - *f« Cx»y + hn ) * *(*»*)]e
111 functions /17/ have sectionwise properties the same as the
function g and thus are also jointly nglo — continuous on 1° .
All 1 - sections of aur starting function T are approzimately
continuous and bounded. Hence , x I are integrable deriva-

tives and we have the eguality:

/718/ T (x,y) - Iim M (x,yj] fTor all(xtyj £ 12 .
n

The proof of Proposition 2 is thereby completed.

COROLLARY 1. Let f: R2 R be a function with T».“. - continuo-
us all sections fx and F/ ; £x,y)tR2 -Then T is thepointwise

limit of the seguence of TJp - continuous functions.

_ 2 _
Proof: Let us decompose the piane R as the countable union

of unit sauares:

NS r2w Li I ook x [Pz -
mm- k«=

Applying Proposition 2 to each restriction f MN[k, k+1] x jm, m+lj
and sticking the obtained seguences of functions together we
obtain the claimed assertion. /cf. Proposition 6 bellow/.

In connection with Corollary 1 let us recollect the following

facts:
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a/ Each function f:R2 -?R with T - continuous all I- and
T-sectiona belongs to the Baire class two. Paper "3 ] contains
an example of such function not belonging to the first class
of Baire.

b/ There eiists a function f:RZ—*> R whose all X - sections and
Y-sections are approximately continuous which is totally
discontinuous and which is not the pointwise limit of any se-
guence of Bg - almost eyerywhere continuous functions
/ see 53 /

COROLLARY 2. Let f: R2— »R be the same as in Corollary 1. Then f

satisfies the following condition /AP./ : for each a< b and

nonempty sets U andV satisfying

/20/ UC|(x,y)eR2 s fO*»y)<a 3» Vc|(x,y)C-R2 : F(x,y);>b g
121/ uC™xty)e R2 s ClI D has positive ordlnary upper density
at (x,y)jang
YCAx,y)™R : ClL Y has positive ordinary upper density
at Gy N
it is true that 0S CI Y / O or VV CI Dpi O. The sign
Cl stands here for the closure operator in the Euclidean topology
on the piane .
Proof: This follows easily from Theorem 4.5 on p. 323 from
[181 , see alsoj2J ,
COROLLARY 3. Let f: R2 R be as in the Corollary 1. Then ¥ and
-T satisfy the following condition /AP2/: for each a< b

2
and an arbitrary closed subset FC R with

/22/ m2(p)- m2 f (*,t)< a} )< + oo
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it Is true that the set

/23/ W: »  Fn](x,y) s F(x,y)"bjr

possesses the property that

724/ (ot sVcl (wAs))n —-jix,y) €ER2 sf(x,y) b~

is a countable intersection of cozero sets in the T“#v" - topolo-

aj on the piane where 9

1251 S: »™M(X,¥Y)ER2 : CI W has positive upper ordinary den-
sity at the point (xXty) ~ ,

Let us recall that cozero sets in the a.e. topology are ezactly
the sets of the form GOZ where GU Z is open in the ordina-
ry density topology, G is open in the Euclidean topology and Z

is an Ye- set of - measure zero.
Proof: This follous from theorems 4.7 and 5.1 on p. 323 in
tjej-

COROLLARY 4. tet f: R «»R be as in the Corollary 1. Then there

_ . 2 _ . .
is a function £1 - R R i1n the first Baire class and an F<T

set Zo w R2 of nyg - measure zero such that:

/26/ j (x,y)e R2: f (x,y) £ Cx»y)jcZo .

Proof: Since all functions/17/ are m2 - almosteyerywhe-

re continuous, the inelusion /26/ foliowa directly from the Theo-
rem 3 of Mauldin jTI7J generalized in an obyious manner onto the
case of functions of two yariables see also fl6j .

The following proposition, based upon results of /38~ answers

problem 6 b on p. 18 in £6J iIn the negative:

PROPOSITION 3. There is a function f: Rk—- R being the point-

wise limit of -almost eberywhere continuous functions and



satisfying condition /AP1/ from Coratlary 2 but non ezpressable

as a pointwise linit of T " - continuous functions f : Rk— R.

a,a.

P r oo f: Aa in eiample 6.8 on p. 327 fron/[18ja function satis-
fying Grande®s condition /AP~Y/ but that fails to aatisfy condi-
tion /APg/ formulated in Corollary 3 can be ezhibited. Bearing
in mind that each pointwise limit of T g, - continuous functions
arsst fulfil the condition /APg/ In accordance with theorem 4.7 on
p- 323 in [ 18] we obtailn the desired thesis.
The subseguent proposition decldes the problem 6 O on p.17 from
(sj iIn the positive ™,
PROPOSITION 4. let fs I>-»R be a function whose all sections
x and ™ (X,y) iI"12 are approiimately continuous. Then f is a
pointwise limit of seguence of Td Td - continuous functions,
*Alere Td is the density topology on the interval 1.
Pr o o f: As in the proof of Proposition 2 let us assume that f
is positire and bounded, Then define the function g by the formu-
+a /12/ and obserre that it has approiimately continuous all sec-
tions gyj Jyel and iIncreasing and continuous all sections gx,

I. These properties are inherited by functions fn defined
by the formuta /17/. Inroking Proposition 1 for T = Td we obtain
that the functions f are T4 & T, continuous and thus also
Td & Td - continuous. That ends the proof.
COROLLARY 5. Each function f: R2— R separately approiimately
continuous /ant therefore continuous with respect to the topology
d” defined in [15J /la a pointwise limit of a seguence of
id Td - continuous functions.
Proof: It is eiactly the same as the proof of Corollary 1.

Corollaries 1 and 5 may be viewed as a generalization onto the
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case of a.e. - topology /resp. the density topology/ of the well-
known fact that any separately continuous function of two variab-
lew heing in the Baire class one is the pointwise limit of the
seguence of jointly continuous functions. The r- topology defined
in £13] occupies an intermediate place hetween Ta and T and

also for it we have a similar result:

PROPOSITION 5. Bach function fs R2-~R whose all sections f and
fy, X,¥) € R2, are r- continuous is a pointwise limit of a seguen-
ce of Tr &Tr - continuous functions.

The proof will be ommited, since it is very similar to the given
ones. The following eitension theorem will be useful in order to
solve the problem 12 a on p. 22 in f6J :

PROPOSITION 6. /ef.”23] , thm. 3/ The following conditions are
equlvalent:

/i/ for each Baire 1 function g: Rk-3>R there is Tj-* - conti-

nuous function fT: Rr—» R such that the following inclusion holds:
/27/ "~ Rk :f(@ - g(0jo A , A CRK [cf.formula (26))
/ii/ the set A C Rk fulfils theeguality:

/28/ (ct A) - 0.

In case k»x1 this theorem is proved in (4J . The proof given in
£4 'J does not carry over the multidimensional case. This theorem
is obtained in a fuli generality /“Chaika spacesasdomaines and
Prechet spaces as ranges /in [Z5]as a conseguenceof someselec-
tion theorem for multifunctions. Proposition 6 Itself solves
another problem 13 a on p. 23 from f6), but we use it here to
decide the aguestion 12 a from |6 ]. Namely we have:

PROPOSITION 7. There is a function ordinarily approiimately eon-
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tinuous and - a.e. continuous, T: Rp-—’.3>R , such that the set:

/29/ D (F) ; *]1(x,y) 6R2 : *x fails to be approiimately con-
tinuous at y or f7 Tails to be approiimately continuous at X |

is uncountable.

Proof: Let Cbe a Cantor temary set in unit interval . Take
A*li Cv”~Ci I and let g » R2 R be the indicator of the

set C i C. The eguality /728/ is obyiously fulfilled since A is

a perfect subset of piane measure zero. Thus the restriction g/A
h®s n_oo_ continuous eitension T: RZ—Z"R . Por this eitension we
have D (t) - Ci C so that the set /29/ is uncountable.

In accordance with [20j for each perfect set P of measure zero -
m(p)» O, there 1is an bounded, upper semlcontinuous, in the
Zahorski class function }\V :R—-" R such that the set of
points of approiimate discontinuity of f is eiactly the prescri-
bed set P and each point x P 1s a point of Te - continuity of
f . We may use such function” in place of g to obtain the func-
tion T iIn proposition 7 with some additional properties.

Moreoier let us recall that the set of approiimate continuity
points of Baire 1 function g: R —?>R is residual, Borel and has

full measure. Neyertheless a characterisation problem for sets

/29/ remains still unresolved.
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NOTES:

v

3/

4/

5/

6/

As it has been remarked by Mirostaw Filipczak, the thesis of
Proposition 1 holds under significantly weaker assumptions,
e.g. if the set”™y 6 1: ¥F7 is continuous at x ™ is dense in
I. A modification of Proposition 1 with still more local cha-

racter may be also giwen.

Original formulation /in French/ of the problem is the following
La fonction f: R2-& R ayant toutes ses sections fx and 7 conti-
nues presague partout et approximativement continues doit-elle
etre la limite d"une suite de fonctions continues presgue parto-
ut?

We omit a piece of routine but tedious yerification.

The sign O means here and in the seguel the family of rectan-
gles £x-h , i+h] x ['y-k , y+kj for which a positive con-
stant K eilists, such that the ratio h/k fulfils a double inegua-
lity: E~1< h/k ™ K.

That means, EJ is an ordinary differentiation basis.

Soit T R2 R une fonction approximativement continue par
rapport a chacune de deux variables. Eiliste-t-il une suite de
fonctions continues par rapport a la topologie produite d i d

convergente en tout point vers f ?

On sait que 1 "ensemble /29/ peut etre denombrable infini,

Peut-i1l etre indenombrable?
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O FUNKCJACH KTORYCH CIECIA SA APROKSYMATYWNIE CIAGLE 1 PRAWIE
WSZEDZIE CIAGLE

Streszczenie

W tym artykule pokazano, ze kazda funkcja dwéch zmiennych, kto-
rej wszystkie ciecia poziome i pionowe sg ciggle w topologii a.e,
O"Malleya na prostej jest punktowg granica ciggu funkcji ciaghych
w topologii a.e, na pkaszczyznie. Rozwigzuje to z nawigzka prob-
lem opublikowany przez Z.Grandego w [5] 1 powtorzony jako problem
6c w [6] . Zastosowana metoda pozwolita réwniez udzieli¢ odpowie-
dzi na pytanie 6 a3 z [6] tzn. pokaza¢, ze funkcja dwoch zmiennych
o0 aproksymatywnie ciagdych wszystkich cieciach jest punktowag gra-
nicg ciaggu funkcji Td ¥ Td - ciaghych.

Kolejnym wynikiem tej pracy jest czesciowa charakteryzacja zbioru
/30/ punktéow, w ktorych ktores z ciec¢ aproksymatywnie cigglej
wzgledem zwykdej bazy roézniczkowania / i nawet dodatkowo prawie
wszedzie cigglej/ funkcji dwoéch zmiennych moze by¢ aproksymatywnie
nieciggle. Stwierdzenie 7 pokazujgc ze taki zbior /30/ moze byc
nieprzeliczalny odpowiada na pytanie 12 a z - Ponadto zauwa-
zono, ze jeden z przyktadéw zamieszczonych w f18J stanowi rozwig-
zanie problemu 6 b z [ Sjta mianowicie Swiadczy o tym, ze warunek
konieczny na to, aby funkcja by#a granica ciagu funkcji a.e. -
ciaghlych sformutowany przez Z.Grandego w j2] nie jest jednoczes-
nie warunkiem wystarczajacym. Tematyka tego artykudtu moze tez byc
rozpatrywana jako badanie wkasnosci pewnych topologii na plaszczyz-

nie skonstruowanych na wzér prac f15] 1 y7 "



