LA PROPRIÉTÉ DE BAIRE DES FONCTIONS DE DEUX VARIABLES

Parmi les nombreuses définitions équivalentes des espaces de Baire, retenons celle-ci:
un espace topologique \([E, T] \) est dit espace de Baire si, \(C_1 \) désignant l'ensemble des parties de \(E \) de première catégorie /maigres/, on a \(T \cap C_1 = \{ \emptyset \} \).

On dit, qu'une partie \(B \) de \(E \) a la propriété de Baire si elle s'écrit
\(B = \bigcup \Delta N = [U \cap N] \cup [N \cap U] \) ou \(U \in T \) et \(N \in C_1 \). L'ensemble \(J_B \) de ces parties est une tribu /\(\mathcal{O} \) - algèbre/ et \(C_1 \) est un idéal propre de \(J_B \).

Une application \(f: E \to F \) valuée sur l'espace topologique séparable \(F \) est dit qu'elle possède la propriété de Baire si pour tout l'ensemble ouvert \(G \) dans \(F \), l'ensemble \(f^{-1}(G) \) appartient à \(J_B \). Les autres définitions se trouvent dans \([3] - [5]\). Dans son article \([1]\), Z. Grande introduit la notion suivante:

DEFINITION 1. La fonction \(g: E \to F \) est dit B - dégénérée au point \(y \in E \), s'il existe l'ensemble ouvert \(G \) dans \(F \) tel que \(\{y\} \subset G \)
\[|y| \in g^{-1}(G) \] est de première catégorie au point \(y \), c'est-à-dire il existe une voisinage ouvert \(V \) de \(y \) telle que
\[g^{-1}(G) \cap V \subset C_1 \]

Soit \(E = R \times R \) et \(F = R \), où \(R \) désigne l'espace des nombres réels.
Considérons une fonction \(f: E \to F \) telle que toutes ses sections
\[y \mapsto f_x/y = f(x, y), \quad x \in R \]
\[x \mapsto f_y/x = f(x, y), \quad y \in R \]
on ont la propriété de Baire. Dans \([1]\), Z. Grande montre que la condition nécessaire et suffisante pour qu'une application \(f: R^2 \to R \) telle que toutes ses sections \(f_x \) et \(f_y \) ont la propriété de Baire, possède l'
la propriété de Baire est que l'ensemble $D_{/f/} = \{ y, x \mid f_x \text{ est } /B/ - \text{ dégénérée dans le point } y \}$ soit maigre. Dans ce qui suit, on étudie les conséquences de remplacer la définition 1 par la :

Définition 2. Une fonction $g: R \to R$ est dit $/B/$ - dégénérée au point y, s'il existe une nombre réel b telle que:

1/ $y \in A^{/b/}g = \{ x \mid g(x) < b \}$
2/ $A^{/b/}g$ est de première catégorie au point y.

Une fonction $f: R \to R$ est dit $/B/$ - dégénérée au point y si la fonction $g = - f$ est $/B/ - \text{ dégénérée en ce point.}$ [cons. [6]]

Remarque 1. Toute application $/B/$ - dégénérée ou bien $/B/$ - dégénérée est aussi $/B/$ - dégénérée, car $/B/$, C_1 est un couple de relèvement complet $/M \in C_1 \land A \in M \Rightarrow A \in C_2$. Il existe une fonction $/B/$-dégénérée, qui n'est ni $/B/$ - dégénérée ni $/B/$ - dégénérée. On vérifiera aisément que

$$R \ni x \mapsto f(x) = \begin{cases} x^{-1} & ; x \neq 0 \\ 0 & ; x = 0 \end{cases}$$

satisfait /au point $x = 0$/ aux conditions exigées.

Définition 3. [voir [2]] Soit S un sous-ensemble de E qui est dense et dénombrable.

Ayant une fonction $g: E \to R$ on désigne par D^g l'ensemble de points de discontinuité de la fonction g et par g^S, g^S respectivement des fonctions:

$$E \ni t \mapsto g^S /t/ = \lim \inf /g \mid S/ /x/ \in R$$
$$S \ni x \mapsto t$$

$$E \ni t \mapsto g^S /t/ = \lim \sup /g \mid S/ /x/ \in R$$
$$S \ni x \mapsto t$$

Disons qu'une fonction g vérifie la propriété:

1/ lorsque l'ensemble D^g appartient à C_1,
2/ lorsque pour tout $t \in E$ on a $g^S /t/ \leq g /t/ \leq g^S /t/$ quel que soit l'ensemble dense et dénombrable S.

Lemme 1. [conf. [2], th. 3] Soit $f: R^2 \to R$ une fonction telle que toutes ses sections f^y possèdent la propriété de Baire et toutes ses sections f^x ont les propriétés $/S/$ et $/P/$ de la définition 3. Alors f
possède aussi la propriété de Baire.

Lemme 2. [conf. [1], lemme 1]. Soit g: R→R une fonction avec la propriété de Baire. On désigne par D/g l'ensemble D/g = \{ y ∈ R : g est |B| - \| ou bien |B| - \| dégénérée au point y \}. La fonction y → h/y = \{ g/y \ ; y ∈ R - D/g \)
\[\lim \inf (g | R - D/g)/y \ ; y ∈ D/g \]
verifie les conditions /P/ et /S/.

Démonstration. Fixons un ensemble ouvert, non-vide U ⊆ R et soit y₁ appartient à V - D/g. Comme la fonction g n'est en ce point y₁ ni /B/ - \| ni /B/ - \| dégénérée et elle possède la propriété de Baire, alors il existe un ensemble ouvert, non-vide U₁ ⊆ U tel que l'ensemble
\[g^{-1} (g/y₁ - \frac{1}{2} ; g/y₁ + \frac{1}{2}) = A_g/y₁ - \frac{1}{2} /g \ A_g/y₂ + \frac{1}{2} /g \]
est résiduel dans U₁.

Supposons, qu'il existe un point y₁ ∈ U₁ tel que
\[| h/y₁ - g/y₁ | > 1/2 \]
On distingue trois cas :
/1/ y₁ ∈ R - D/g,
/2/ la fonction g est |B| - \| dégénérée au point y₁,
/3/ la fonction g est |B| - \| dégénérée en ce point
Dans chaque de ces possibilités il existe un ensemble ouvert, non-vide, U₁ ⊆ U₁, dans lequel l'ensemble
\[\{ y ∈ U₁ : | g/y₁ - g/y₁ | > \frac{1}{2} \} \]
est résiduel, en contradiction avec deux faits:
/4/ U₁ contient U₁,
/5/ l'ensemble \{ y ∈ U₁ : | g/y₁ - g/y₁ | ≤ \frac{1}{2} \} est résiduel dans U₁.

Des résultats ci-dessus, il vient l' inclusion
\[h/U₁ ⊆ \{ g/y₁ - 1/2 ; g/y₁ + 1/2 \} \]
On peut recommencer la même opération avec U₁, puis avec U₂, U₃, etc., finalement on construit une suite \{Un \} d'ensembles ouvertes, non-vides, telle que /6/ \{ U_{n+1} \ ⊆ U_n \ ; ou \} \{ U_{n+1} \ est, comme d'habitude, la fermeture topologique d'un ensemble U_{n+1} \}
\[\text{Le diamètre } \delta \{ U_{n} \} \text{ ne dépasse pas le nombre } \frac{1}{2^n} \delta /|B| \delta /h / Un /n / | ≤ 21-n \text{ pour } n = 1, 2, \ldots \]
L'espace R étant complet, l'intersection \[\cap_{n=1}^{\infty} U_n \] n'est pas vide.
Désignons par \(y_o \) le point commun de tous les ensembles \(U_n \). La fonction \(h \) est continue en ce point \(y_o \). Il reste à prouver que la fonction \(h \) vérifie la propriété \(/S/\). Soit \(S \) un ensemble dense et dénombrable. Admettons, au contraire, que la fonction \(h \) ne vérifie pas la propriété \(/S/\). Il existe alors un point \(y_o \) tel que \(h_S/y_o/ > h/y_o/ \) ou bien \(h_S/y_o/ < h/y_o/ \). Sans restringer la généralité on peut supposer, que \(h_S/y_o/ > h/y_o/ \).

Nous avons trois possibilités:

1°) \(y_o \in R \setminus D/g/\)

2°) la fonction \(g \) est \(/B/ \downarrow \) dégénérée au point \(y_o \)

3°) la fonction \(g \) est \(/B/ \uparrow \) dégénérée en ce point.

Soit \(V \) une voisinage ouvert de point \(y_o \) telle que \(h/y_o/ > h_S/y_o/ - \alpha/4 \), pour toutes \(y \in S \cap V \), ou a est la différence \(h_S/y_o/ - h/y_o/ \). Dans chaque de ces cas il existe un ensemble ouvert, non-vide \(U \) contenu dans \(V \) et tel, que l'ensemble \(\{ y \in R : h/y_1/ < h/y_o/ + \alpha/4 \} \) est résiduel dans \(U \). Fixons un point \(y_1 \in U \cap S \). On voit facilement que \(h/y_1/ > h_S/y_o/ - \alpha/4 \). Dans chaque de 3 cas \(/1°/, /2°/, /3°/ \), concernant \(y_1 \), il existe un ensemble ouvert, non-vide \(Z \) contenu dans \(U \), et tel que l'ensemble \(\{ y : h/y_1/ > h_S/y_o/ - \alpha/4 \} \) est résiduel dans \(Z \), ce qui est contraire au fait que \(Z \subset U \) et l'ensemble \(\{ y : h/y_1/ < h/y_o/ + \alpha/4 \} \) est résiduel dans \(U \). Cette contradiction achève la démonstration.

DÉFINITION 4. Soient \(E \) l'espace de Baire et \(A \subset E \) un ensemble. On dit qu'un ensemble \(B \subset E \) est un \(/B/-couverture de l'ensemble \(A \) lorsque trois conditions suivantes soient satisfaites:

1°) \(A \) est un sous-ensemble de \(B \),
2°) l'ensemble \(B \) possède la propriété de Baire,
3°) l'intersection \(A \cap C \) est non-vide pour tout ensemble \(C \subset B \) qui possède la propriété de Baire et est de II catégorie.

THÉORÈME. Soit \(f: R^2 \rightarrow R \) une fonction telle que toutes ses sections \(f_x \) et \(f^y \) ont la propriété de Baire. La condition nécessaire et suffisante pour que telle fonction \(f \) avait la propriété de Baire est que l'ensemble \(D/f/ \subset \{ (x,y) : f_x \in /B/ \downarrow \) ou \(/B/ \uparrow \) dégénérée au point \(y \} \) soit maigre \(/C_1/ \).
DÉMONSTRATION. [conf. [1]] : Désignons par E l'ensemble $E = \{ x : \{ y : (x, y) \in D/t, y \in R \} \in \text{II catégorie} \}$ et par F l'ensemble $F = \{ y : \{ x : (x, y) \in D/t, y \in R \} \in \text{II catégorie} \}$.

Il est évident que $E \subseteq C_1$ et $F \subseteq C_1$. Posons, pour toutes les points y et pour $x \in R - E$

$$h_{x/y} = \left\{ y \in R - \left[D/t \right]_x \mid \lim_{t \to y} \inf \left[D/t \right]_x \right\}$$

ou $\left[D/t \right]_x = \{ y : (x, y) \in D/t \}$.

Posons aussi $h_{x,y} = h_{x/y} \setminus h_{y/x}$ pour $(x, y) \in (R - E) \times (R - F)$. D'après le lemme 2 toutes les fonctions $h_{x/y}$ pour $x \in R - E$ ont les propriétés P et S.

Car $F \subseteq C_1$ et toutes les sections ${y}$ pour $y \in R - F$ ont la propriété de Baire, alors la fonction $f : (R - E) \times (R - F) \to R$ possède, d'après le lemme 1, la propriété de Baire. Par conséquent notre fonction possède cette propriété aussi. $
$
Admettons, au contraire, que l'ensemble D/t est de II catégorie. Supposons maintenant que l'on fasse correspondre à tout point $(x, y) \in D/t$ un intervalle ouvert d'extrémités rationnelles $U(x, y)$ et un ensemble ouvert $V(x, y)$ d'une base dénombrable dans R telles que

9/ $t(x, y) = [x, y]_R$, appartient à $U(x, y)$,

5/ y appartient à $V(x, y)$,

11/ et $V(x, y)$ est maigre. Car l'ensemble D/t est de II catégorie, il existe donc un intervalle U d'extrémités rationnelles et un ensemble ouvert $V \subseteq R$ tels que l'ensemble $A = \{ (x, y) \in D/t : V(x, y) = U \}$ est de II catégorie. Soit $B \subseteq A$ une $/B/-couverture de l'ensemble A. Car f possède la propriété de Baire, il vient que l'ensemble $D = f^{-1} (U) \cap B \cap (R \times V)$ aussi possède cette propriété. Il est de II catégorie, puisqu'il contient l'ensemble A. D'autre part toutes les sections D_x de l'ensemble D sont maigres, d'ou la contradiction.

BIBLIOGRAPHIE

6 W.A. Śliżack, Une condition équivalente à la mesurabilité d'une fonction de deux variables, Problemy Matematyczne, vol. 3

LA PROPRIÉTÉ DE Baire DES FONCTIONS DE DEUX VARIABLES.

Résumé

Dans cet article on introduit la notion plus générale que la /B/-dégénération utilisée dans [1]. En usant de cette notion on formule une condition équivalente à la propriété de Baire d'une fonction de deux variables dont les sections ont la propriété de Baire.

WŁASNOŚĆ BAIRE' a FUNKCJI DWÓCH ZMIENNYCH

Streszczenie

W. Śliżak; Własność Baire'a funkcji dwóch zmiennych. W tym artykule wprowadza się pojęcie bardziej ogólne niż /B/- degeneracja zastosowana w [1]. Wykorzystując to pojęcie formułuje się warunek równoważny własności Baire'a funkcji dwóch zmiennych, których cięcia mają własność Baire'a.