ZESZYTY NAUKONE WYZZZEJ SZKOEY PEDAGOGICZNEJ W BYDGOSZCZY Problemy Hatematyczne 1982 z. 3

TADEUSZ LARIAN JȨDRYKA
Bydgoszcz

AN ESTILAATON OF THE SOLUTION OF VOIMERRA'S IMTEGRAL EQUATION FOR VECTOR-VALUED FUNCTIONS WITH VAINES IN SOSIE FUNCTIOH SPACES

In [2] we dealt with a Volterre integral equation

$$
\begin{equation*}
u(x)=\int_{a}^{x} T(x, t) u(t) d t+b(x) \tag{1}
\end{equation*}
$$

where $x, t, a \in R^{n} ; b$ and u are vector-valued functions of the variable $t(a \leq t \leq x)$ with values in a Banach space Y, and $T(x, t)$ is a linear bounded operator of Y into itself for $a \leq t \leq x$, stroagly measurable in both variables.

The order relation $c \leq d$ for $c=\left(c_{1}, \ldots, c_{n}\right) \in R^{n}, d=(d, \ldots$, $\left.d_{n}\right) \in R^{n}$ means here that $c_{1} \leqslant d_{i}$ for $1=1,2, \ldots, n$. Denoting by y the space of all such operators and supposing that $\|b(x)\|_{\mathrm{I}} \leq \mathrm{B}(\mathrm{x})$ where $B(x)$ is measurable and bounded for $x \geq a$, there was proved the following theorem :

Theorem. Let us suppose that $A(x, t)$ is a real-valued function, defined for $a \leqslant t \leqslant x$, nondecreasing with respect to x for every t and such that $A(t, t)$ is measurable and boundod for $t \geqslant a$;
$\alpha \int_{a}^{\pi} A(t, t) d t<1$ for $x \geqslant a$. Horeover, let us suppose that
(2) $\| T(x, t) \mid \eta \leqslant \alpha A(x, t)$ for $a \leq t \leq x$.
where \propto is independent of x and t. Then the integral equation (1) has a unique solutions in the space of all Y-valued bounded
and strongly measurable functions in $x \geqslant a$. Moreover we have an estimation

$$
\|u(x)\|_{Y} \leqslant \beta(x) \exp \left(\int_{a}^{x} \alpha A(t, t) d t\right) \quad \text { for } x \geq a
$$

where $\beta(x)=\sup _{a \leq t \leq x} B(x)$, and where $\|b(x)\|_{Y} \leq B(x)$.

1. The aim of this section is to verify the inequality (2) in the case when the operator $T(x, t)$, which will be briefly denoted by T, is given by the equality $v=T u$, where $\nabla_{\sigma}=\int_{a} T_{\sigma, \tau} d u_{\tau}$ and Y is the space $C V{ }_{p}$ of continuous functions u of bounded p-variation $V_{p}(u)$ in $\left.\langle a, b\rangle, p\right\rangle 1$. Let us recall that the p-variation of u in $\langle a, b\rangle$ is defined by

$$
\nabla_{p}(u)=\sup _{\pi} \sum_{i=1}^{n}\left|u\left(q_{i}\right)-u\left(q_{i-1}\right)\right|^{p}
$$

where $\mathbb{T}: a=\tau_{0}<\tau_{1}<\ldots<\tau_{n}=b$ is an arbitrary division of the interval < $a, b\rangle$ (see L.C.Young, $[5]), Y_{p}$ will mean the space of all functions u for which $V(u)<+\infty$. Then $\|u\|_{p}=\left(V_{p}(u)\right)^{1 / p}$ is a seminorm in both, in $C V_{p}$ and V_{p} and $\|u\|_{p}=0$ if and only if u is constant in $\langle a, b\rangle$. L. ${ }^{p}$. Young proved, $[5]$, that if $\left.\left.p, q\right\rangle \frac{1}{a}, \frac{1}{p}+\frac{1}{q}\right\rangle$! and $u \in C V_{p}, w \in V_{q}$, when the Riemann-Stieltjes integral $\int_{b}^{a} w d u$ exists and

$$
\left.\left|\int_{a}^{b} w d u\right| \leq K\|w\|_{q}\|u\|_{p}\right\}\left(\frac{1}{p}+\frac{1}{q}\right) \quad \text { where } \quad \xi(\xi)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

We shall prove now the following theorem:
The orem 1. Let $p, q>1, \frac{1}{p}+\frac{1}{q}>1$ and let a real-valued function $T_{5, \tau}$ derined for $\sigma, \tau \in\langle a, b\rangle$ satisfy the following conditions:
(a) $T_{r_{1}} \in V_{q}$ and $T_{\sigma, a}=0$ for every $\sigma \in\langle a, b\rangle, T_{a, .}=0$,
(b) the vector-valued function $f:\langle a, b\rangle \rightarrow V_{q}$ defined by $f(\sigma)=T_{\sigma}$. is continuous in $\langle a, b\rangle$,
(c) $A=\left\{\sup _{\pi} \sum_{i=1}^{n}\| \|_{G_{i}} \cdot-\bar{I}_{(i-1)} \cdot \|\left.\right|_{q} ^{p}\right\} \quad \frac{1}{p}<+\infty$.

Then the operator T defined by $v=T u$ with

$$
\nabla_{\sigma}=\int_{a}^{b} T_{6, q} d u q
$$

is a linear continuous operator in $C F_{p}$ and its norm

$$
\|T\|_{y j} \leq \alpha_{i}
$$

with

$$
\alpha=x\}\left(\frac{1}{p}+\frac{1}{q}\right)
$$

Proof. From the condition (b) it follows that $V=\sigma_{\sigma}$ is a cantinuous function in $\langle a, b\rangle$, because for arbitrary $\sigma_{1}, \sigma_{2} \in\langle a, b\rangle$ we have

$$
\begin{aligned}
& \left|\sigma_{\sigma_{1}}-\sigma_{\sigma_{2}}\right|=\left|\int_{a}^{b}\left(\frac{T}{\sigma_{1}, T}-T_{\sigma_{2}} \tau\right) d u_{c}\right| \leqslant \\
& \left.\leq \mathrm{x}\left\|\mathrm{p}_{\mathrm{c}_{1}}-\mathrm{T}_{\mathrm{E}_{2}} \cdot\right\|_{\mathrm{q}}\|\mathrm{u}\|_{p}\right\}\left(\frac{1}{\mathrm{p}}+\frac{1}{q}\right) \text {. }
\end{aligned}
$$

How, we have

$$
\begin{aligned}
& \|v\|_{p}=\left\{\sup _{\prod} \sum_{i=1}^{n}\left|\int_{a}^{b}\left(T_{\sigma_{i,}, \tau}-T_{i=1}, \tau\right) d u_{q}\right| p\right\}^{\frac{1}{p}} \leqslant \\
& \left.\leqslant\left\{\sup _{\prod} \sum_{i=1}^{n} \mathbb{Z}\left\|T_{\sigma_{i}}-T_{c_{i=90}} \cdot\right\|_{q}^{p}\|u\|_{p}^{p}\right\}^{p}\left(\frac{1}{p}+\frac{1}{q}\right)\right\} \frac{1}{p}= \\
& =K A\}\left(\frac{1}{p}+\frac{1}{q}\right)\|u\|_{p} .
\end{aligned}
$$

This completes the proof.
 let us consider the case if $Y=\nabla_{1}$ where ∇_{1} is the space of functicas of bounded variation $\|u\|_{1}=\nabla_{1}(u)$ in $\langle a, b\rangle$. The following theorem holds:

- Theorem 2. Let $T_{6, \%}$ be a real-valued functions defined for $\sigma, \mathcal{T} \in$ $\langle a, b\rangle$ and satisfying the following conditions:
(a) $T_{6} \%$ is continuous with respect to \mathcal{q} far every $\sigma \in\langle a, b\rangle$,
(b) $T_{6 i}$ satisfies the Lipschitz condition with respect to σ for every $\tau \in\langle a, b\rangle$:
$\left|\frac{T}{6, \tau}-T \sigma_{1}^{y}, \tau\right| \leqslant A\left|\sigma^{\prime}-\sigma^{\prime \prime}\right|$
with the constant A independent of τ.
Then the operator T defined as in Theorem 1 is a continuous linear operator in V_{1} and its norm $\|T\| y \leqslant \alpha A$ with $\alpha=b-a$.

Proof. He have

$$
\|v\|_{1}^{i}=\sup _{\pi} \sum_{i=1}^{n}\left|\int_{a}^{b}\left(T_{\sigma_{i, t}}-T_{\sigma_{i, 1}} q\right) d u_{i}\right| \leq A(b-a)\|u\|_{1} .
$$

3. Finally, we are going to estimate the norm $\|T\| y$ in case of the space $Y=H$ of functions satisfying the HBlder condition with an exponent $\gamma, 0<\gamma \leqslant 1$, in the interval $\langle a, b\rangle$, the norm in H is defined by

$$
\|u\|_{日}=|u(a)|+\sup _{\tau_{1}^{\prime}+\kappa(0),} \frac{\left|u_{\tau^{\prime}}-u_{\tau^{\prime}}\right|}{\left|\tau^{\prime}-\tau^{\prime \prime}\right|^{\gamma^{2}}}
$$

There holds
Theorem 3. Let $T_{q q}$ be a real-valued function defined for $6, \uparrow \in$ $\langle a, b\rangle$ and such that
(a) $T_{\varsigma, 5}$ is an inter grable function of q in $\langle a, b\rangle$ for every $\delta \in\langle a, b\rangle$
(b) $T_{\sigma, \varepsilon}$ satisfies the Holder condition

$$
\left|T_{\sigma_{1}^{\prime} \tau}-T_{\sigma_{1}^{\prime \prime} c}\right| \leq A\left|\sigma^{\prime}-\sigma^{\prime \prime}\right|^{\gamma}
$$

for every $\tau \in\langle a, b\rangle$, with A independent of τ. Then the operator T defined $a s \nabla=T u$ with $V=\int_{\sigma}^{b} T_{\sigma} u_{q} d q$ is a continuous linear operator in H with norm

$$
\|T\|_{y} \leqslant \alpha
$$

where

$$
\alpha=(b-a) \max \left(1, \frac{(b-a)^{\gamma}}{\gamma+1}\right) \text {. }
$$

Proof. Ne obtain

$$
\begin{aligned}
& 6
\end{aligned}
$$

But

$$
\left|u_{q}\right| \leqslant|u(a)|\left[1-(\tau-a)^{\gamma}\right]+\|u\|_{g}(q-a)^{\gamma}
$$

for evtryq $q \in\langle a, b\rangle$.
Hence

$$
\begin{aligned}
\|\nabla\|_{H} & \leqslant A(b-a)\left[|u(a)|\left(1-\frac{(b-a)^{\gamma}}{\gamma+1}\right)+\|u\|_{H} \frac{(b-a)^{\tau}}{\gamma+1}\right] \leqslant \\
& \leqslant A(b-a) \max \left(1, \frac{(b-a)^{\gamma}}{\gamma+1}\right) \|\left(b \|_{B} .\right.
\end{aligned}
$$

REPRRENCES
[1] Z. Butlewski; Sur la limitation des solutions d'un système d'equations intégrales de Volterra, Ann. Poion. Liath., 6 1959, - p.253-257
[2] T.M.Jędryzka; Oszacowanie rozwiqzania równania całkowego Volterry dla funkeji wektorowych, Rocz. Pol. Tow. Watem. Prace Matemat., IX 1965, p.267-271
[3] J. insielak, T. Orlicz; On generalized variation I, Studia Hath. 18. 1959 p.11-41
[4] T.Sato; Sur la limitation des solutions d'un systeme d'equations integrales de Volterra. Tohoku itath. J.4.1952.p.272-274
[5] L.0.Young; An inequality of the HBlder type, connected with Stieltjes integration. Acta 路th. ó7.1935.251-281
[6] L.C.Young; General inequalities for Stieltjes integrals and the convergence of Fourier series. inthoinnalen 115.1938. p. 581-6 12

AN ESHIMATION OF THE SOLUTICN OF VOTGRRA'S INTEGRAL EQUATION FOR VACTGR-VALUED PUNCTIONS WINH VALUES IN SOMB FUNCTION SPACES

SUTMARY

There are given proofs of three theorems in this paper, in which is defined the constante of the estimation of the solution of Volterra's integral equation when the values of the kernel are in the $C V_{p}$ and ∇_{1} spaces and also in case when the kernel satisfy the HBlder condition regard to parameter.

