
Studies and Materials in Applied Computer Science, Vol. 3, No. 5, 2011
pp.21-24

21

 ACTIVE OBJECT DESIGN PATTERN

Łukasz Górski

The student of the 2nd year of the Computer Science
The Faculty of Mathematics and Computer Science

Nicolaus Copernicus University in Toruń
ul. Chopina 12/18

87-100 Toruń
e-mail: lgorski@mat.umk.pl

Abstract: Abstarct: Parallelization of software plays nowadays a major role in software efficiency increase. The paper aims to
present an active object design pattern and to point out its usefulness in parallel programs design. The ProActive system is also
roughly presented, together with the implementation of discussed design pattern.

Keywords: Concurrent programming, functional programming, active object, ProActive, confluence

1. INTRODUCTION

It's a cliche to say that currently – as the processor clock
frequency growth has slowed down – the main method for
software efficiency increase is its parallelization [1].
However, software parallelization is not easy. A
programme using parallelism is not a sequence of
individually executed commands, which are relatively easy
for analysis, but is comprises of numerous concurrently
executed operations.

2. THREADS AND LOCKSA

The most fundamental tools available in programming
languages such as threads and locks , are tools of very low
level. Moreover, their use results in elimination of the
sequential programme properties, such as:
comprehensibility, predictability and determinism [2].
When a software developer uses those mechanism, he or
she is additionally burden with the necessity to ensure
appropriate synchronisation of individual threads. While
use of lock mechanisms results in such problems, like [1]
[3]:

 correctness of two separately analysed
functions in which locks were used does not
mean that the code using those functions is
correct; to illustrate that problem, one can
consider the following example, noted in
pseudocode for simplification:

global a, b;
function1 () {
 lock (a); /* 1 */ lock(b);
 /* operations... */
 unlock(b); unlock(a);
 }
function2 () {
 lock(b); lock(a);
 /* operations... */
 unlock(a); unlock (b);
}

Obviously, when analysed separately, functions behave as
expected. However, if they are called successively in the
following way: function1(); function2(), this may cause
potential deadlock. The problem is caused by (potentially
possible) expropriation of the function function1 at place
marked (1) as well as by calling the code of the function
function2, and as consequence: causing the situation, when

Łukasz Górski, Active object design pattern

22

function1 waits for release of the object b, while function2
– of the object a,

 use of locks assumes that the developer shall
always obey the discipline, i.e. shall: observe
the convention assuming that access to
resource shared by threads shall be
synchronized each time, i.e. appropriate locks
shall be applied and released each time such
resource is read or written. Maintaining such
convention, particularly in case of groups,
can be very difficult,

 the last problem of design nature is the fact
that locks are used globally, i.e. each code
fragment using shared resource should
comply with appropriate access protocol; as a
consequence, it is impossible to specify exact
code fragment responsible for blocking
access as it is distributed over the entire
programme – which obviously makes the
analysis even more difficult.

3. ASYNCHRONOUS CALLS, FUTURES

As a result of the aforementioned problems, it is necessary
to introduce higher level programming abstractions [1] [4].
Threads represent only “sequential processes that share
memory” [5]. They neither force use of good practises or
prevent use of bad practices thus causing aforementioned
problems. Therefore it is recommended to use higher level
abstractions using mechanisms such as: asynchronous calls
and futures.
Both concepts are used in the active object pattern, so it is
purposeful to describe them roughly here.
 Asynchronous call of a function (method) assumes that it
does not block operation of the calling thread. It simply
continues operation and the method works concurrently in
a separate execution thread.
Whereas the result of asynchronous operation can be
achieved using future object. Generally it gives access to
one operation – get – which gets the result of the
asynchronous call; if it is impossible to get the result
(because the asynchronous operation has not been finished
yet), the thread getting the result is locked until the result is
accessible. It is worth noting that, retrieving the future
object does not have locking character itself.
Use of the aforementioned structures is presented in the
following programme developed in Java language:

class Foo implements Callable<Integer>
{
 public Integer call() {
 Thread.sleep(3000);
/* simulation of the load operation */
 return 42;
 }
}

public class Main {
 public static void main(String[]
args)
{
 FutureTask task = new
FutureTask(new Foo());
/* creating future object */

Executors.newSingleThreadExecutor().
submit(task);
/* execution of the operation in a
separate thread, main thread is not
locked and can execute other operations
*/

System.out.println (task.get());
/* (locking) retrieval of the future
object value */

}
}

4. ACTIVE OBJECT

First of all, active object pattern assumes that method
execution shall be separated from its calling. The intention
of that separation is to facilitate synchronous access to
shared resources by methods called in different execution
threads [6] [7]. Active object has its own execution thread
as well as a message queue. Method is called
asynchronously: i.e. it does not lock the calling thread but
places appropriate message in the message queue of the
active object. They are handled sequentially and managed
by the scheduler, so messages do not have to be handles in
order of their placement in the queue but use of different
handling policies is also possible. Whereas the value
returned by (asynchronous) calling of the method can be
retrieved using futures objects.
The chart of classes implementing the active object pattern
was shown in the diagram UML (acc. to [8] [6]).

Studies and Materials in Applied Computer Science, Vol. 3, No. 5, 2011
pp. 21-24

23

Figure 1 UML diagram of the active object pattern.

Thus the pattern includes the following components:

 Client interface – operated on the client side;
creates an object representing the call of an
appropriate method and placing it in an
appropriate message queue of the active object;
returns future object enabling access to the value
returned by the method; it constitutes
implementation of the design pattern proxy [9],

 Method representation – the component
constructed by the client interface, constituting the
abstraction of the method call, which is placed in
the message queue of the active object,

 Message queue – includes all calls of methods for
a given active object.

 Scheduler – calls individual methods represented
in the message queue, according to the assumed
policy,

 Resource – represents resource, access to which is
modelled using active object pattern,

 Future – gives access to the value returned by the
method call.

5. FUNCTIONAL LANGUAGES, PROACTIVE
AND CONFLUENCE

Functional languages are characterized by high
parallelization potential [1] [10]. Programmes developed in
such languages like Haskell or OCaml may be, de facto,
parallelized totally without the software developer
interference. It results from the fact that those languages
assume use of immutable objects, while operation
performed on those objects are not associated with any side
effects. . Thanks to absence of side effects, operations
making up the programme may be executed in any order

and may be freely interleaved. Hence there is no need to
synchronize individual execution threads as they cannot
interfere to each other at all. That property is called
confluence . It is no doubt that such property significantly
facilitates design and analysis of concurrently operating
programmes.
This part of the paper includes some remarks regarding
theoretical implications of some implementation of the
active object pattern, i.e. that used in ProActive system [9].
ProActive is a Java language library, that facilitates
concurrent and distributed programming, provides access
to elements associated with data protection and migration
[11]. It has evolved from the library which is the
implementation of the active object pattern described in
theoretical studies of Caromel i Henrio [10]. Currently it is
categorized as middleware used while working with
computational grids.
Theoretical grounds for active object implementation in
ProActive is provided by ASP calculus, which constitutes
formalization and enables accurate studies on active object
properties. More detailed description of it can be found in
[10], or a brief description in [12].
First of all, it should be noted that implementation of the
active object pattern used in ProActive is characterized by
certain differences from the pattern presented above. It
assumes that the application is structured into so called
subsystems. A subsystem consists of a single active object
and some (≥ 0) passive objects (in practice: “common”
Java objects without own execution threads and message
queues). Only active objects are visible beyond the
subsystem. Passive objects belong to certain subsystems,
but if they are moved to other subsystems (by calling
active objects’ methods from another subsystem, within
which they are transferred as arguments), deep copy
mechanism is used. Only active objects are transferred
using reference.
The consequence of such solution is strict separation of
individual subsystems. And – in consequence – ensuring
confluence properties in appropriate conditions. So the
order of calling different methods for different active
objects does not influence programme operation, which
results from isolation of the methods. That order has little
influence on the client side as well – as methods are called
asynchronously and they return future objects, hence do
not lock client threads. On the other hand, of course, that
property is not maintained when methods called for the
purpose of the active object modify its state (change values
of the object fields). In such a case, results obtained as a
result of the call of methods of a given active object
depend on the order they were handled by the scheduler.

Łukasz Górski, Active object design pattern

24

6. CONCLUSION

Sutter [3] presented very picturesque analogy. He stated
that programming using locks is similar to structural
programming using goto command. However, the kind of
abstraction we need for concurrent programming should
correspond to relation between object-oriented
programming and structural programming.
It seems that the active object pattern can be regarded as
such a solution. Use of the discussed pattern facilitates
programming of parallel applications by elimination of the
necessity to synchronize the access to shared resources (on
the client side). It also enables quite easy use of multi-
processor and multi-core architecture of computer systems
– all you need is to assign a single active object to a single
processing unit [6]. Analogous method is used also in
development of distributed processing software (active
object mapping – processing node – is sufficient here,
taking into account multi-processor character of such
nodes) [11]. Active object patterns can be applied in fields
where applications of high responsiveness are required,
and the architecture capable of supporting multiple
independent tasks is desired: e.g. when creating graphic
user interfaces or web services [13].
Java developers can use its implementation within
advanced project, such as ProActive. They can also use
sample code presented in [6]. The paper [7] includes the
discussed pattern implemented in C++ programming
language. Developers using other languages may use
diagrams and assumptions described in the study herein as
well as information available in [8] and [6].

References

1. H. Sutter i J. Larus, „Software and the Concurrency
Revolution,” [Online]. Available:
http://queue.acm.org/detail.cfm?id=1095421.

2. E. A. Lee, „The Problem with Threads,” [Online].
Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EE
CS-2006-1.pdf.

3. H. Sutter, „The Trouble with Locks,” [Online].
Available: http://drdobbs.com/cpp/184401930.

4. H. Sutter, „The Free Lunch Is Over: A Fundamental
Turn Toward Concurrency in Software,” [Online].
Available:
http://www.gotw.ca/publications/concurrency-ddj.htm.

5. H. Sutter, „Use Threads Correctly = Isolation +
Asynchronous Messages,” [Online]. Available:
http://drdobbs.com/high-performance-
computing/215900465.

6. R. G. Lavender i D. C. Schmidt, „Active Object: an
Object Behavioral Pattern for Concurrent
Programming,” w Proceedings of the Second Pattern
Languages of Programs conference in Monticello,
Illinois, September 6-8, 1995.

7. H. Sutter, „Prefer Using Active Objects Instead Of
Naked Threads,” [Online]. Available:
http://drdobbs.com/go-
parallel/article/showArticle.jhtml?articleID=22570009
5.

8. Strona główna systemu ProActive,” [Online].
Available: proactive.inria.fr.

9. E. Gamma, R. Helm, R. Johnson i J. Vissides, Design
Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1994.

10. D. Caromel i L. Henrio, A Theory of Distributed
Objects, Springer, 2005.

11. D. Caromel, D. Christian, A. di Constanzo i M.
Leyton, „ProActive: an Integrated platform for
programming nad running applications on Grids and
P2P systems,” Computational Methods in Science and
Technology, nr 12, 2006.

12. D. Caromel, H. Ludovic i B. P. Serpette,
„Asynchronous and Deterministic Objects,” w
Proceedings of the 31st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
Nowy Jork, ACM New York, 2004, pp. 123-134.

13. H. Sutter, „The Pillars of Concurrency,” [Online].
Available: http://drdobbs.com/architecture-and-
design/200001985.

14. International Standard ISO/IEC 14882:2011.
Programming Languages – C++.

15. F. Baader i T. Nipkow, Term Rewriting and All That,
Cambridge: Cambride University Press, 1998.

