ODDZIAŁYWANIE MIAST NA ZAMULANIE DRóg WODNYCH
– NA PRzyKŁADZIE UJŚCIOWEGO ODCINKA BRDY W BYDGOSZCZY


Aby rozpoznać mechanizmy dostaw i transportu materiałów osadowych w korycie Brdy w Bydgoszczy, przeprowadzono badania terenowe: pomiary batymetryczne akwenu, geodezyjne zdjęcia rzędnych zwierciadła wody w profilu podłużnym, pomiary spadków, sondowanie w 10 profilach poprzecznych miąższowości nagromadzonych osadów dennych, pomiar głębokości koryta w 50 przekrojach poprzecznych. Przeanalizowano poziomie dane dotyczące jakości wód pobranych przez WIOS w Bydgoszczy w posterniku zlokalizowanym powyżej Bydgoszczy (wodna rzeka i poniżej Bydgoszczy) [Brdy ujściowe – tor regulacyjny]. Podano analizę wyników dotyczące jakości osadów pobranych z powierzchni warstwy sedymenłów zgromadzonych w torze regulacyjnym. Zabranie dane dotyczące ilości zrzucanych ścieków komunalnych do koryta Brdy w Bydgoszczy.

Brda, w dolnym swoim biegu, cechuje się silną prędkością. Szczególnie istotnym przejawem antropopresji było spiętrzenie rzeki w jej ujściu do Wisły o ponad cztery metry w latach siedemdziesiątych XIX wieku (rys. 1) na potrzeby silnie rozwijającego się przemysłu drzewnego, dla zachowania zdolności żeglugowych Brdy na ujściowym biegu oraz ochrony Bydgoszczy przed wdarciem się wzbrykanych wód Wisły w górę rzeki. Obecnie budowane płoty cechują stanowiące urządzenia na tzw. hydroprojekt Czeremchów, tj. jaz walcowy z 1907 r., śluz Czeremcha oddana do użytku w 1999 r., nieczynna już śluz Brdy ujściowe z XIX w. oraz elektrownia wodna Mewat. Płytzenie ujściowego odcinka Brdy spowodowało załanianie istniejącej doliny.
Dostawa materiału osadowego a morfologia koryta

Brdy była również przez ponad 40 lat odbiornikiem niezrozumianych ścieków komunalnych, przemysłowych i deszczowych. Jeszcze w 2001 r. 16,6% odprowadzanych do Brdy ścieków stanowiły ścieki surowe (rys. 3). Odbiornikami zużytych wód na terenie miasta były oczywiście również Wisła i Kanał Bydgoski, lecz do Brdy trafiało 70% wszystkich, ładunków zawierających odprowadzanych ścieków [Bydgoski program... 2001]. Po oddaniu do użytku dwóch dużych oczyszczalni ścieków, w 2004 r. ścieki komunalne nie trafiają już do Brdy. Istotne wyniki badań podaje E. Jurkowska (2001), m.in. że gospodarka komunalna tylko na odcinku Brdy od wodowskazu w Smukale do ujścia do Wisły wprowadza ok. 97% całej ilości ścieków odprowadzanych do wód powierzchniowych dorzecza Brdy. Wraz z tymi ściekami wprowadzana jest zawiesina, której ilość stanowi ok. 99% całości zawieszonych wodorowolnych odprowadzanych w ściekach do wód powierzchniowych dorzecza Brdy.

Osady powstają w wyniku działania procesów fizycznych, chemicznych i biologicznych, łącznie składających się na procesy sedimentacyjne. Duży wpływ na transport fiunium odgrywa rumińsko klastyczne, a w szczególności zawiesina. Zawiesina, stanowiąca bardzo drobny materiał pochodzący z denudacji i erozji powierzchni zlewni, często jest pokryta warstwą substancji toryskich i już przy niewielkich prędkościach flaga transportu. Jednak w „cierniu” nurtu, w miejscach przeszkód w korycie, następuje jej akumulacja. Może to być akumulacja statyczna, w wyniku której tworzą się „pokłady” osadów fiunalno-łuskowych, lub może to być akumulacja chwilowa, po której następuje jej ponowne włączenie do transportu rzecznego w wyniku tzw. procesu resuspensji.

Odcinek ujściowy Brdy, jak wykazały przeprowadzone pomiary spadków z wiercienia wody w profilu podłużnym, umożliwia wzmacnianie sedimentacji materiału osadowego. Analiza jednego z podstawowych wskaźników, uwzględnianych przy ocenie stanu wód – zawiesiny ogólnej wskazuje, iż woda na ujściowym odcinku Brdy (stanowisko jaz Czersko Polskie) cechują się zdrowym obciążeniem w materiale wód powierzchniowych, anizeli wody powyżej miasta (stanowisko Smukala) (rys. 4).

Przeprowadzone pomiary spadków z wiercienia wody w profilu podłużnym 12-kilometrowego odcinka rzeki pozwoliło ustalić zasięg piętrzenia (cofit) zbiornika (rys. 5). Na podstawie analizy profilu podłużnego zbiornika wody i dna koryta rzeki można przyjąć, że istnieje pewien pas osadu, w którym występują istotne zmiany w składzie materiału osadowego i jego akumulacji.

ści od miejsca, oscylują w zakresie od 0,1 m do 1,6 m (rys. 2, profile A – B, C – D). Na podstawie miąższości osadów na torze regatowym wyróżniono dwie strefy:
- południowy fragment toru, pomiędzy mostem kolejowym a jazm walcowym,
- środkowa i północna część toru regatowego.

Pierwsza strefa obejmuje niewielką powierzchnię (8%), jednak cechuje się silnym zróżnicowaniem morfometrii dna oraz miąższości osadów (rys. 2). Średnia głębokość toru regatowego w tym miejscu, oszacowana na podstawie pomiarów terenowych, wynosi 1,78 m, a miąższość osadów – 0,56 m. Druga część toru regatowego cechuje się odmienną morfometrią dna i wielkością nagromadzenia osadów. W rzeźbie dna można wyraźnie odróżnić dwie części: zachodnią – płynną a większą miąższość osadu denny, oraz wschodnią – głębszą o zdecydowanie mniejszej ilości akumulowanego materiału (rys. 2). Zachodnia część cechuje się średnią głębokością wynoszącą 1,93 m, natomiast głębokość średnia wschodniej części wynosi 2,94 m. Osady denne

![Diagram: Stężenie odczynników wody w murawach w Badgoszczy]

Rys. 3. Stopień oczyszczania ścieków miejskich w Badgoszczy odprowadzanych do koryta Brdy (opracowano na podstawie niepublikowanych danych MWIK w Badgoszczy)

wskazują na spadek stężenia w południowej części toru przy jednoczesnym wzroście wartości wskaźników w jego północnej części. Jest to związane z zamożoną akumulacją metali ciężkich w północnej części zbiornika, a w wyniku braku przepływu wód. Jaz walcowy, położony w południowej części toru, wypuszczając przepływ wody, przyczynia się do zmniejszenia tempa akumulacji metali w osadach dennych.

Wysokie stężenia metali ciężkich w osadach dennych toru regatowego świadczą ponadto o silnej presji antropogenicznej na wody ujściowe odcinka Brdy. Porównanie ocen geochemicznych osadów dennych na podstawie badań Państwowego Instytutu Geologicznego w ramach PMS na dwóch stanowiskach na Brdzie, położonych powyżej oraz poniżej Badgoszczy, ukazuje niekorzystny wpływ miasta w czasach historycznych oraz potwierdza tezę o akumulacją metali ciężkich w osadach dennych toru regatowego. Na stanowisku Smukała ocena geochemiczna wskazuje, iż osady denne są niezanieczyszczone, natomiast na stanowisku poniżej miasta ocena geochemiczna przyjmuje klase zanieczyszczonych.

Również pozostałe wskaźniki kwalitacyjne stanów wód wskazują na obecność wyższych wartości w osadach położonym na jazie Czersko Polskie niż w części Brdy przed Badgoszczy. Obcięcie wód Brdy w substancje organiczne na stanowisku położonym w północnej części miasta (wodnisk Smukała) jest niewielkie. Odnotowywane wartości oscylują w zakresie od 0,9 mgO₂/l w 2011 r. do 4,5 mgO₂/l w 1995 r. Na stanowisku zlokalizowanym na jazie w Czersku Polskim wartości BZT oscylują w zakresie od 0,0 mgO₂/l w 2011 r. do 7,1 mgO₂/l w 1995 r. Porównując wartości średnioroczne analizowanego wskaźnika, zauważa się, że stanowisko Smukała cechuje się o wiele niższymi wartościami niż wody badane na stanowisku położonym na jazie Czersko Polskie. Świadczy to o akumulacji substancji organicznej na miejskim odcinku Brdy. W omawianym okresie (1985–2011) na obu analizowanych stanowiskach obcięcie wód w substancje organiczne cechuje się tendencją spadkową. Wartość średnioroczna systematycznie maleje od 2.2 mgO₂/l (stanowisko Smukała) do 1.7 mgO₂/l (stanowisko Czersko Polskie) do odpowiednio 1.6 mgO₂/l i 1.8 mgO₂/l.

Gospodarka Wodna nr 6/2013

226
Obciążenie wód Brdy w substancje biogeniczne, na przekładzie fosforu ogólnego, na stanowisku Smukała jest dwukrotnie niższe niż na stanowisku jaz Czersko Polskie. Czynnościowe wartości w Smukałe oscylują w zakresie od 0,030 mg/P/l w 2001 r. do 0,330 mg/P/l w 2005 r. Na stanowisku zlokalizowanym na jazie w Czersku Polskim stężenia fosforu ogólnego oscylują w zakresie od 0,046 mg/P/l w 2011 r. do 0,490 mg/P/l w 1995 r. Zróżnicowanie to świadczy o akumulacji substancji biogenicznej w ujęciowym odcinku Brdy. W analizowanym okresie (1995−2011) obciążenie wód w substancje biogeniczne cechuje się tendencją spadkową na stanowisku w Czersku Polskim. Średnioroczne stężenie maleje z poziomu 0,270 mg/P/l w 1995 r., do poziomu 0,110 mg/P/l w 2011 r. Na stanowisku Smukała średnioroczne wartości fosforu ogólnego oscylują w całym okresie na zbliżonym poziomie −0,100 mg/P/l.

Wnioski

Ujęciowy odcinek Brdy od wielu wiośków ulegał silnej presji antropogenicznej. Poczynając od zbiórki regulacyjnych na końcu XIX wieku, które doprowadziły nie tylko do wzrostu powierzchni zrewiradła wody, w wyniku podpiętrzenia wód Brdy jazem Czersko Polskie, ale również do zmiany charakteru odcinka z fluwialnego − będącego pod silnym wpływem Wysły − na charakter bardziej retencji (zbiornikowy). Zmiany te stworzyły na obszarze toru reaflowego dogodne warunki do akumulacji materiału dostarczanego ze zlewiny (do 1965 r.) oraz z kolektorów ścieków komunalnych i deszczowych. W połączeniu z dalszym rozwojem miasta (przemysłowego i demograficznego), proces ten decydował o kumulacji zanieczyszczeń w osadach dennych, klastrytowym według kryterium geochemicznego jako zanieczyszczone. Na ok. 3-kilometrowym odcinku Brdy powyżej jazu Czersko Polskie następowała intensywna akumulacja rumowiska. W latach 2004−2005 bagrowano jedynie fragment toru reaflowego. Z ostatnich badań wynika, że − aby zapewnić minimalne głębkości w szlaku nawigacyjnym MDW E 70 koniecznie trzeba będzie kolejny raz przeprowadzić prace pogłębiane w południowej części toru reaflowego.


Rys. 5. Profil podłużny zrewiradła wody i dna w niewiły ujęciowym odcinku Brdy w Bydgoszczy na tle sieci hydrograficznej (źródło: Opracowanie własne na podstawie pomiarów terenowych i cyfrowej mapy hydrograficznej Polski − 2007).

LITERATURA

2. Bydgoski program renowacji i rekultywacji ścisłego systemu wodno–kanalizacyjnego, 2004, MWW w Bydgoszczy (Ocena edz.dzielnicy i środowisko, Studium wykono-
5. M. HABEL, J. MAKAREWICZ, 2006, Degrada-cja bydgoskiego odcinka Kanalu Bydgoskiego, w: [red.] P. Gierszewicz, M. Karasiwicz (red.), Idea i praktyczny uniwersalizm geografia − geografia fizyczna. Dokumentacja Geo-
graficzna nr 32, Wyd. IG-PZ PAN, s. 99−105.