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1. Preliminaries

The letters N,N0 and P denote the sets of positive integers, non-negative integers and primes, respectively. For a set
A we use the symbol clA to denote the closure of A. The symbol Θ(a) denotes the set of all prime factors of a ∈ N.For all a, b ∈ N, we use (a, b) and lcm(a, b) to denote the greatest common divisor of a and b and the least commonmultiple of a and b, respectively. Moreover, for all a, b ∈ N, the symbols {an + b} and {an} stand for the infinitearithmetic progressions:

{an+ b}
df= a ·N0 + b and {an}

df= a ·N.

Hence, clearly, {an} = {an + a}. For the basic results and notions concerning topology and number theory we referthe reader to the monographs of Kelley [4] and LeVeque [6], respectively.
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2. Introduction

In 1955 Furstenberg [2] defined the base of a topology on the set of integers by means of all arithmetic progressionsand gave an elegant topological proof of the infinitude of primes. In 1959 Golomb [3] presented a similar proof ofthe infinitude of primes using a topology D on N with the base BG = {
{an + b} : (a, b) = 1} defined in 1953 byBrown [1]. Ten years later Kirch [5] defined a topology D′ on N, weaker than Golomb’s topology D, with the base

BK = {{an + b} : (a, b) = 1, a is square-free}. Both topologies D and D′ are Hausdorff, the set N is connected inthese topologies and locally connected in the topology D′, but it is not locally connected in the topology D (see [3, 5]).Moreover, the set N is semiregular in the stronger topology D and it is not semiregular in the weaker topology D′(see [10]).In 1993 Rizza [7] introduced the division topology T′ on N as follows: for X ⊂ N he put
g(X ) = clX = ⋃

x∈X

D(x), where D(x) = {y ∈ N : y |x}.
The mapping g forms a topology T′ on N. It is easy to see that the family B′ = {{an}} is a basis for this topology.In [9] the author defined the common division topology T on N, stronger than the division topology T′, with the base
B = {{an + b} : Θ(a) ⊂ Θ(b)}. Both topologies T and T′ are T0 and they are not T1, the set N is connected inthese topologies and locally connected in the topology T′, but it is not locally connected in the topology T (see [7, 9]).Moreover, the set N is semiregular in the stronger topology T and it is not semiregular in the weaker topology T′(see [10]).Since 2010 the author has examined properties of arithmetic progressions in the above four topologies. It was alreadyshown that the base of Golomb’s topology D consists of all arithmetic progressions that are connected in the commondivision topology T, and conversely, all arithmetic progressions connected in T form a basis for D (see [9]). More-over, it turned out that all arithmetic progressions are connected in topologies D′ and T′ (see [8, Theorem 3.5] and[9, Theorem 4.1], respectively). Recently the author gave a characterization of regular open arithmetic progressions inthese topologies (see [10]).In this paper we continue studies concerning properties of arithmetic progressions, namely, we characterize closuresof arithmetic progressions in the common division topology T on N. From now on we will only deal with the commondivision topology and to simplify the notation the symbol T will be omitted.
3. Main results

We start with two simple technical lemmas.
Lemma 3.1.
Assume that U is an open set. If c ∈ U , then there is an arithmetic progression {an+ c} ∈ B such that {an+ c} ⊂ U .

Proof. Let c ∈ U . Since the set U is open, there is an arithmetic progression {an+b} ∈ B such that c ∈ {an+b} ⊂
U and Θ(a) ⊂ Θ(b). So, {an+ c} ⊂ {an+ b} ⊂ U and Θ(a) ⊂ Θ(c). This implies that {an+ c} ∈ B.
Lemma 3.2.
If b1 ≡ b (moda), then cl{an+ b} = cl{an+ b1}.
Proof. Without loss of generality we can assume that b1 < b. Since {an+ b} ⊂ {an+ b1}, we have cl{an+ b} ⊂cl{an+ b1}. So, it is sufficient to show the opposite implication.Let x ∈ cl{an+b1}. Fix an open set U with x ∈ U . By Lemma 3.1, there is a basic arithmetic progression {cn+x} ⊂ U .Since {cn+ x} contains x and it is open, {cn+ x}∩{an+b1} 6= ∅. Taking into account that a nonempty intersection of
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two infinite arithmetic progressions is an infinite arithmetic progression, we can conclude that the set {cn+x}∩{an+b1}is infinite. Simultaneously, the set {an+ b1}\{an+ b} is finite, which implies
∅ 6= {an+ b} ∩ {cn+ x} ⊂ {an+ b} ∩ U.

This proves that x ∈ cl{an+ b}.
The proof of next remark is evident.
Remark 3.3.cl{n+ b} = N for each b ∈ N.
From now on in all theorems of this paper we assume a > 1.
Theorem 3.4.
Assume p ∈ P, k ∈ N and b1 ≤ pk . If b1 ≡ b (modpk ), then cl{pkn+ b} = {pkn+ b1} ∪ (N\{pn}). In particular,(i) the arithmetic progression {2n+ 1} is closed,(ii) cl{pn} = N for each p ∈ P, and(iii) if the arithmetic progression {pn+ b} is open, then cl{pn+ b} = N for each p ∈ P.

Proof. First we will show that cl{pkn + b} ⊂ {pkn + b1} ∪ (N\{pn}). Using the assumptions b1 ≤ pk and
b1 ≡ b (modpk ), we obtain

{pkn+ b} ⊂ {pkn+ b1} ⊂ {pkn+ b1} ∪ (N\{pn}).
If (p, b) = 1, then (p, b1) = 1, too. Hence {pkn + b1} ⊂ N\{pn} and the set N\{pn} = {pkn + b1} ∪ (N\{pn}) isclosed. This proves that cl{pkn+b} ⊂ {pkn+b1}∪ (N\{pn}). So, we can assume p |b. Then, obviously, p |b1, whence
{pkn+ b1} ⊂ {pn}. Since

{pn}\{pkn+ b1} = pk−1⋃
i=1 {p

kn+ ip}\{pkn+ b1} = ⋃
i∈{1,...,pk−1} \ {b1}

{pkn+ ip}

and all arithmetic progressions {pkn+ ip} are open, the set {pkn+b1}∪ (N\{pn}) = N\ ({pn}\{pkn+b1}) is closed.Consequently, cl{pkn+ b} ⊂ {pkn+ b1} ∪ (N\{pn}).Now we will show the opposite inclusion. Let x ∈ {pkn+ b1} ∪ (N\{pn}). We consider two cases.
Case 1: x ∈ {pkn + b1}. Since b1 ≡ b (modpk ), by Lemma 3.2, cl{pkn + b} = cl{pkn + b1}. So, x ∈ {pkn + b1} ⊂cl{pkn+ b1} = cl{pkn+ b}.
Case 2: x ∈ N\{pn} = ⋃

d∈{1,...,p−1}{pn + d}. Then x ∈ {pn + d} for some d ∈ {1, . . . , p − 1}. Fix an open set Usuch that x ∈ U . By Lemma 3.1, there is an arithmetic progression {cn+ x} ∈ B with {cn+ x} ⊂ U and Θ(c) ⊂ Θ(x).Since x ∈ N\{pn}, we have (p, x) = 1. So, (p, c) = 1, too. Using the Chinese Remainder Theorem (CRT), we obtain
∅ 6= {cn+ x} ∩ {pkn+ b} ⊂ U ∩ {pkn+ b},

whence x ∈ cl{pkn+ b}.Finally, observe that conditions (i) and (ii) are evident. Moreover, since the arithmetic progression {pn + b} is open,we have p ≡ b (modp). So, cl{pn+ b} = {pn} ∪ (N\{pn}) = N, whence condition (iii) holds, too.
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Theorem 3.5.
Let a = pα11 . . . pαkk be the prime power factorization of a. Then cl{an+ b} = ⋂k

i=1 cl{pαii n+ b
}
.

Proof. First observe
{an+ b} = k⋂

i=1
{
pαii n+ b

}
.

Hence cl{an+ b} ⊂
⋂k
i=1 cl{pαii n+ b

}.Now we will show the opposite inclusion. Assume x ∈ ⋂k
i=1 cl{pαii n+ b

}. Then, by Theorem 3.4, x ∈ ⋂k
i=1({pαii n+ bi

}
∪(N\{pin})), where bi ≡ b (modpαii ) and bi ≤ pαii for each i ∈ {1, . . . , k}. Fix an open set U such that x ∈ U . ByLemma 3.1, there is an arithmetic progression {cn+ x} ∈ B with {cn+ x} ⊂ U . Hence Θ(c) ⊂ Θ(x). We consider threecases.
Case 1: x ∈

⋂k
i=1{pαii n+ bi

}
. By CRT, there is exactly one s ∈ N such that 1 ≤ s ≤ pα11 . . . pαkk and

k⋂
i=1{p

αi
i n+ bi} = {(pα11 . . . pαkk

)
n+ s

} = {an+ s}.

Since bi ≡ b (modpαii ) and bi ≤ pαii for each i ∈ {1, . . . , k}, we have {pαii n+ b
}
⊂
{
pαii n+ bi

} for each i ∈ {1, . . . , k}.Hence
{an+ b} = k⋂

i=1
{
pαii n+ b

}
⊂

k⋂
i=1
{
pαii n+ bi

} = {an+ s}.

So, s ≡ b (moda). By Lemma 3.2, we obtain that cl{an+b} = cl{an+ s}. Consequently, x ∈ {an+ s} ⊂ cl{an+ s} =cl{an+ b}.
Case 2: x ∈

⋂k
i=1(N\{pin}). Since ⋂k

i=1(N\{pin}) = N\
⋃k
i=1{pin}, we have x /∈

⋃k
i=1{pin}. So, (pi, x) = 1 for each

i ∈ {1, . . . , k}. Hence (pi, c) = 1 for each i ∈ {1, . . . , k}, which implies (a, c) = 1. By CRT,
∅ 6= {cn+ x} ∩ {an+ b} ⊂ U ∩ {an+ b}.

Consequently, x ∈ cl{an+ b}.
Case 3: There are a number r ∈ {1, . . . , k − 1} and a permutation {σ1, . . . , σk} of the set {1, . . . , k} such that x ∈⋂r
i=1{pασiσi n+ bσi

}
∩
⋂k
i=r+1(N\{pσin}). By CRT, there is exactly one s ∈ N such that 1 ≤ s ≤ pασ1σ1 . . . pασrσr and

r⋂
i=1
{
pασiσi n+ bσi

} = {(
pασ1σ1 . . . pασrσr

)
n+ s

}
.

So,
x ∈

{(
pασ1σ1 . . . pασrσr

)
n+ s

}
∩
(
N \

k⋃
i=r+1{pσin}

)
.

Define a1 = pασ1σ1 . . . pασrσr and a2 = pασr+1
σr+1 . . . pασkσk . Then (a1, a2) = 1. Moreover, (pσi , x) = 1 for each i ∈ {r + 1, . . . , k}.Hence (pσi , c) = 1 for each i ∈ {r+1, . . . , k}, which implies (a2, c) = 1. Since bσi ≡ b (modpασiσi

) and bσi ≤ pασiσi for each
i ∈ {1, . . . , r}, we obtain that {pασiσi n+ b

}
⊂
{
pασiσi + bσi

} for each i ∈ {1, . . . , r}. So,
{a1n+ b} = r⋂

i=1
{
pασiσi n+ b

}
⊂

r⋂
i=1
{
pασiσi n+ bσi

} = {a1n+ s}.
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Hence
{a1n+ s} ∩ {a2n+ b} = {an+ b}. (1)

Since x ∈ {a1n+s}, we have {a1n+s}∩{cn+x} 6= ∅. It is known that nonempty intersection of two infinite arithmeticprogressions is an infinite arithmetic progression. Therefore
{a1n+ s} ∩ {cn+ x} = {dn+ e}, where d = lcm(c, a1).

Moreover, if (c, a2) = 1 and (a1, a2) = 1, then (d, a2) = 1. So, by CRT and condition (1), we obtain
∅ 6= {dn+ e} ∩ {a2n+ b} = {a1n+ s} ∩ {cn+ x} ∩ {a2n+ b} = {cn+ x} ∩ {an+ b} ⊂ U ∩ {an+ b}.

Consequently, x ∈ cl{an+ b}.
Theorem 3.6.
Let a = pα11 . . . pαkk be the prime power factorization of a. Define

A = {l ≤ a : (pi, l) = 1 or l ≡ b
(modpαii ) for each i ∈ {1, . . . , k}}.

Then cl{an + b} = ⋃
l∈A{an + l}. In particular, if a is square-free and the arithmetic progression {an + b} is open,

then cl{an+ b} = N.

Proof. First assume x ∈ cl{an+ b}. By Theorems 3.5 and 3.4, respectively,
cl{an+ b} = k⋂

i=1 cl{pαii n+ b
} = k⋂

i=1
({
pαii n+ bi

}
∪ (N\{pin})),

where bi ≡ b (modpαii ) and bi ≤ pαii for each i ∈ {1, . . . , k}. We consider three cases.
Case 1: x ∈

⋂k
i=1{pαii n+ bi

}
. By CRT, there is exactly one l ∈ N such that 1 ≤ l ≤ pα11 . . . pαkk and

k⋂
i=1
{
pαii n+ bi

} = {(pα11 . . . pαkk )n+ l
} = {an+ l}.

Since bi ≡ b (modpαii ) and bi ≤ pαii for each i ∈ {1, . . . , k}, we have {pαii n+b
}
⊂
{
pαii n+bi

} for each i ∈ {1, . . . , k}.Hence
{an+ b} = k⋂

i=1
{
pαii n+ b

}
⊂

k⋂
i=1
{
pαii n+ bi

} = {an+ l},

which proves l ≡ b (moda). Consequently, l ≡ b
(modpαii ) for each i ∈ {1, . . . , k}. Since l ≤ a, we obtain that l ∈ A,whence x ∈ ⋃l∈A{an+ l}.

Case 2: x ∈
⋂k
i=1(N\{pin}). Observe

k⋂
i=1(N\{pin}) = k⋂

i=1
pi−1⋃
d=1

pαi−1
i −1⋃
t=0

{
pαii n+ (pit + d)}.
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So, for each i ∈ {1, . . . , k} there are di ∈ {1, . . . , pi− 1} and ti ∈ {0, . . . , pαi−1− 1} such that x ∈ {pαii n+ (piti +di)}.This implies x ∈ ⋂k
i=1{pαii n+ (piti + di)}. By CRT, there is exactly one l ∈ N such that 1 ≤ l ≤ pα11 . . . pαkk and

k⋂
i=1
{
pαii n+ (piti + di)} = {(

pα11 . . . pαkk )n+ l
} = {an+ l}.

Moreover, since di < pi for each i ∈ {1, . . . , k}, we have (di, pi) = 1 for each i ∈ {1, . . . , k}. Therefore, (piti+di, pi) = 1for each i ∈ {1, . . . , k} and finally, (l, pi) = 1 for each i ∈ {1, . . . , k}. This proves that l ∈ A, whence x ∈ ⋃l∈A{an+ l}.
Case 3: There are a number r ∈ {1, . . . , k − 1} and a permutation {σ1, . . . , σk} of the set {1, . . . , k} such that x ∈⋂r
i=1{pασiσi n + bσi

}
∩
⋂k
i=r+1(N\{pσin}). By CRT, there is exactly one s ∈ N such that 1 ≤ s ≤ pασ1σ1 . . . pασrσr and⋂r

i=1{pασiσi n+ bσi
} = {(pασ1σ1 . . . pασrσr

)
n+ s

}. Moreover,
k⋂

i=r+1(N\{pσin}) = k⋂
i=r+1

pσi−1⋃
d=1

p
ασi−1
σi −1⋃
t=0

{
pασiσi n+ (pσi t + d)}.

So, for each i ∈ {r + 1, . . . , k} there are di ∈ {1, . . . , pσi − 1} and ti ∈
{0, . . . , pασi−1 − 1} such that x ∈ {pασiσi n +(pσi ti + di)}. Therefore,

x ∈
{(
pασ1σ1 . . . pασrσr

)
n+ s

}
∩

k⋂
i=r+1

{
pασiσi n+ (pσi ti + di)}.

By CRT, there is exactly one z ∈ N such that 1 ≤ z ≤ pασr+1
σr+1 . . . pασkσk and

x ∈
{(
pασ1σ1 . . . pασrσr

)
n+ s

}
∩
{(
pασr+1
σr+1 . . . pασkσk

)
n+ z

}
.

Now, using once more CRT we obtain that there is exactly one positive integer l ≤ a such that x ∈ {an+l}. Additionally,since (di, pσi ) = 1 for each i ∈ {r + 1, . . . , k}, we have (pσi ti + di, pσi ) = 1 for each i ∈ {r + 1, . . . , k} and finally,(pσr+1 . . . pσk , z) = 1. So, it is easy to see that
l ≡ s

(modpασ1σ1 . . . pασrσr
) and (pσr+1 . . . pσk , l) = 1. (2)

Since bσi ≡ b
(modpασiσi

) and bσi ≤ pασiσi for each i ∈ {1, . . . , r}, we have {pασiσi n + b
}
⊂
{
pασiσi n + bσi

} for each
i ∈ {1, . . . , r}. Hence

{(
pασ1σ1 . . . pασrσr

)
n+ b

} = r⋂
i=1
{
pασiσi n+ b

}
⊂

r⋂
i=1
{
pασiσi n+ bσi

} = {(
pασ1σ1 . . . pασrσr

)
n+ s

}
,

which implies
s ≡ b

(modpασ1σ1 . . . pασrσr
)
. (3)

By conditions (2) and (3), l ≡ b
(modpασ1σ1 . . . pασrσr

), whence l ≡ b
(modpασiσi

) for each i ∈ {1, . . . , r}. Moreover, by (2),(pσi , l) = 1 for each i ∈ {r + 1, . . . , k}. Consequently, l ∈ A, whence x ∈ ⋃l∈A{an+ l}. This completes the first part ofthe proof.Now we will show the opposite inclusion. Assume x ∈ ⋃l∈A{an+ l}. Then x ∈ {an+ l} for some l ∈ A. Observe
{an+ l} = {(pα11 . . . pαkk

)
n+ l

} = k⋂
i=1
{
pαii n+ l

}
. (4)

1013

Brought to you by | Uniwersytet Kazimierza Wielkiego Bydgoszcz
Authenticated

Download Date | 9/18/15 12:50 PM



The closures of arithmetic progressions in the common division topology on the set of positive integers

We will show {
pαii n+ l

}
⊂ cl{pαii n+ b

} for each i ∈ {1, . . . , k}. (5)
Fix i ∈ {1, . . . , k}. Condition l ∈ A implies (pi, l) = 1 or l ≡ b

(modpαii ). If (pi, l) = 1, then {pαii n + l
}
⊂ N\{pin}.By Theorem 3.4, N\{pin} ⊂ cl{pαii n + b

}, which proves that {pαii n + l
}
⊂ cl{pαii n + b

}. If l ≡ b
(modpαii ), then byLemma 3.2, cl{pαii n+ b

} = cl{pαii n+ l
}. Therefore, {pαii n+ l

}
⊂ cl{pαii n+ b

}, which completes the proof of (5). So,using (4), (5), and Theorem 3.5 we obtain
x ∈ {an+ l} = k⋂

i=1
{
pαii n+ l

}
⊂

k⋂
i=1 cl{pαii n+ b

} = cl{an+ b}.

Finally, observe that if a is square-free, then a = p1 . . . pk . Since
{an+ b} = k⋂

i=1{pin+ b}

and {an+b} is open, {pin+b} is also open for each i ∈ {1, . . . , k}. So, Theorem 3.5 and condition (iii) of Theorem 3.4imply
cl{an+ b} = k⋂

i=1 cl{pin+ b} = N.

This completes the proof.
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