

Central European Journal of Mathematics

The closures of arithmetic progressions in the common division topology on the set of positive integers

Research Article

Paulina Szczuka^{1*}

1 Kazimierz Wielki University, Institute of Mathematics, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland

Received 25 September 2013; accepted 7 January 2014

Abstract: In this paper we characterize the closures of arithmetic progressions in the topology \mathcal{T} on the set of positive integers with the base consisting of arithmetic progressions $\{an + b\}$ such that if the prime number p is a factor of a, then it is also a factor of b. The topology \mathcal{T} is called the common division topology.

MSC: 54A05, 11B25, 11A41, 11A05

Keywords: The common division topology • Closures • Arithmetic progressions © Versita Sp. z o.o.

1. Preliminaries

The letters \mathbb{N}, \mathbb{N}_0 and \mathcal{P} denote the sets of positive integers, non-negative integers and primes, respectively. For a set A we use the symbol clA to denote the closure of A. The symbol $\Theta(a)$ denotes the set of all prime factors of $a \in \mathbb{N}$. For all $a, b \in \mathbb{N}$, we use (a, b) and lcm(a, b) to denote the greatest common divisor of a and b and the least common multiple of a and b, respectively. Moreover, for all $a, b \in \mathbb{N}$, the symbols $\{an + b\}$ and $\{an\}$ stand for the infinite arithmetic progressions:

$$\{an+b\} \stackrel{\text{df}}{=} a \cdot \mathbb{N}_0 + b \quad \text{and} \quad \{an\} \stackrel{\text{df}}{=} a \cdot \mathbb{N}.$$

Hence, clearly, $\{an\} = \{an + a\}$. For the basic results and notions concerning topology and number theory we refer the reader to the monographs of Kelley [4] and LeVeque [6], respectively.

^{*} E-mail: paulinaszczuka@wp.pl

2. Introduction

In 1955 Furstenberg [2] defined the base of a topology on the set of integers by means of all arithmetic progressions and gave an elegant topological proof of the infinitude of primes. In 1959 Golomb [3] presented a similar proof of the infinitude of primes using a topology \mathcal{D} on \mathbb{N} with the base $\mathcal{B}_G = \{\{an + b\} : (a, b) = 1\}$ defined in 1953 by Brown [1]. Ten years later Kirch [5] defined a topology \mathcal{D}' on \mathbb{N} , weaker than Golomb's topology \mathcal{D} , with the base $\mathcal{B}_K = \{\{an + b\} : (a, b) = 1, a \text{ is square-free}\}$. Both topologies \mathcal{D} and \mathcal{D}' are Hausdorff, the set \mathbb{N} is connected in these topologies and locally connected in the topology \mathcal{D}' , but it is not locally connected in the topology \mathcal{D} (see [3, 5]). Moreover, the set \mathbb{N} is semiregular in the stronger topology \mathcal{D} and it is not semiregular in the weaker topology \mathcal{D}' (see [10]).

In 1993 Rizza [7] introduced the division topology \mathfrak{T}' on \mathbb{N} as follows: for $X \subset \mathbb{N}$ he put

$$g(X) = \operatorname{cl} X = \bigcup_{x \in X} D(x), \quad \text{where} \quad D(x) = \{y \in \mathbb{N} : y \mid x\}.$$

The mapping g forms a topology \mathfrak{T}' on \mathbb{N} . It is easy to see that the family $\mathfrak{B}' = \{\{an\}\}\)$ is a basis for this topology. In [9] the author defined the common division topology \mathfrak{T} on \mathbb{N} , stronger than the division topology \mathfrak{T}' , with the base $\mathfrak{B} = \{\{an + b\} : \Theta(a) \subset \Theta(b)\}\)$. Both topologies \mathfrak{T} and \mathfrak{T}' are T_0 and they are not T_1 , the set \mathbb{N} is connected in these topologies and locally connected in the topology \mathfrak{T}' , but it is not locally connected in the topology \mathfrak{T} (see [7, 9]). Moreover, the set \mathbb{N} is semiregular in the stronger topology \mathfrak{T} and it is not semiregular in the weaker topology \mathfrak{T}' (see [10]).

Since 2010 the author has examined properties of arithmetic progressions in the above four topologies. It was already shown that the base of Golomb's topology \mathcal{D} consists of all arithmetic progressions that are connected in the common division topology \mathcal{T} , and conversely, all arithmetic progressions connected in \mathcal{T} form a basis for \mathcal{D} (see [9]). Moreover, it turned out that all arithmetic progressions are connected in topologies \mathcal{D}' and \mathcal{T}' (see [8, Theorem 3.5] and [9, Theorem 4.1], respectively). Recently the author gave a characterization of regular open arithmetic progressions in these topologies (see [10]).

In this paper we continue studies concerning properties of arithmetic progressions, namely, we characterize closures of arithmetic progressions in the common division topology \mathcal{T} on \mathbb{N} . From now on we will only deal with the common division topology and to simplify the notation the symbol \mathcal{T} will be omitted.

3. Main results

We start with two simple technical lemmas.

Lemma 3.1.

Assume that U is an open set. If $c \in U$, then there is an arithmetic progression $\{an + c\} \in \mathcal{B}$ such that $\{an + c\} \subset U$.

Proof. Let $c \in U$. Since the set U is open, there is an arithmetic progression $\{an+b\} \in \mathcal{B}$ such that $c \in \{an+b\} \subset U$ and $\Theta(a) \subset \Theta(b)$. So, $\{an+c\} \subset \{an+b\} \subset U$ and $\Theta(a) \subset \Theta(c)$. This implies that $\{an+c\} \in \mathcal{B}$.

Lemma 3.2.

If $b_1 \equiv b \pmod{a}$, then $\operatorname{cl} \{an + b\} = \operatorname{cl} \{an + b_1\}$.

Proof. Without loss of generality we can assume that $b_1 < b$. Since $\{an + b\} \subset \{an + b_1\}$, we have $cl\{an + b\} \subset cl\{an + b_1\}$. So, it is sufficient to show the opposite implication.

Let $x \in cl\{an+b_1\}$. Fix an open set U with $x \in U$. By Lemma 3.1, there is a basic arithmetic progression $\{cn+x\} \subset U$. Since $\{cn+x\}$ contains x and it is open, $\{cn+x\} \cap \{an+b_1\} \neq \emptyset$. Taking into account that a nonempty intersection of

two infinite arithmetic progressions is an infinite arithmetic progression, we can conclude that the set $\{cn+x\} \cap \{an+b_1\}$ is infinite. Simultaneously, the set $\{an+b_1\} \setminus \{an+b\}$ is finite, which implies

$$\emptyset \neq \{an+b\} \cap \{cn+x\} \subset \{an+b\} \cap U.$$

This proves that $x \in cl\{an + b\}$.

The proof of next remark is evident.

Remark 3.3.

 $cl\{n+b\} = \mathbb{N}$ for each $b \in \mathbb{N}$.

From now on in all theorems of this paper we assume a > 1.

Theorem 3.4.

Assume $p \in \mathcal{P}$, $k \in \mathbb{N}$ and $b_1 \leq p^k$. If $b_1 \equiv b \pmod{p^k}$, then $\operatorname{cl}\{p^k n + b\} = \{p^k n + b_1\} \cup (\mathbb{N} \setminus \{pn\})$. In particular,

- (i) the arithmetic progression $\{2n + 1\}$ is closed,
- (ii) $cl\{pn\} = \mathbb{N}$ for each $p \in \mathcal{P}$, and
- (iii) if the arithmetic progression $\{pn + b\}$ is open, then $cl\{pn + b\} = \mathbb{N}$ for each $p \in \mathcal{P}$.

Proof. First we will show that $cl\{p^kn + b\} \subset \{p^kn + b_1\} \cup (\mathbb{N} \setminus \{pn\})$. Using the assumptions $b_1 \leq p^k$ and $b_1 \equiv b \pmod{p^k}$, we obtain

$$\{p^k n + b\} \subset \{p^k n + b_1\} \subset \{p^k n + b_1\} \cup (\mathbb{N} \setminus \{pn\}).$$

If (p, b) = 1, then $(p, b_1) = 1$, too. Hence $\{p^k n + b_1\} \subset \mathbb{N} \setminus \{pn\}$ and the set $\mathbb{N} \setminus \{pn\} = \{p^k n + b_1\} \cup (\mathbb{N} \setminus \{pn\})$ is closed. This proves that $cl\{p^k n + b\} \subset \{p^k n + b_1\} \cup (\mathbb{N} \setminus \{pn\})$. So, we can assume $p \mid b$. Then, obviously, $p \mid b_1$, whence $\{p^k n + b_1\} \subset \{pn\}$. Since

$$\{pn\} \setminus \{p^k n + b_1\} = \bigcup_{i=1}^{p^{k-1}} \{p^k n + ip\} \setminus \{p^k n + b_1\} = \bigcup_{i \in \{1, \dots, p^{k-1}\} \setminus \{b_1\}} \{p^k n + ip\}$$

and all arithmetic progressions $\{p^k n + ip\}$ are open, the set $\{p^k n + b_1\} \cup (\mathbb{N} \setminus \{pn\}) = \mathbb{N} \setminus (\{pn\} \setminus \{p^k n + b_1\})$ is closed. Consequently, $cl\{p^k n + b\} \subset \{p^k n + b_1\} \cup (\mathbb{N} \setminus \{pn\})$.

Now we will show the opposite inclusion. Let $x \in \{p^k n + b_1\} \cup (\mathbb{N} \setminus \{pn\})$. We consider two cases.

Case 1: $x \in \{p^k n + b_1\}$. Since $b_1 \equiv b \pmod{p^k}$, by Lemma 3.2, $cl\{p^k n + b\} = cl\{p^k n + b_1\}$. So, $x \in \{p^k n + b_1\} \subset cl\{p^k n + b_1\} = cl\{p^k n + b\}$.

Case 2: $x \in \mathbb{N} \setminus \{pn\} = \bigcup_{d \in \{1,...,p-1\}} \{pn + d\}$. Then $x \in \{pn + d\}$ for some $d \in \{1, ..., p - 1\}$. Fix an open set U such that $x \in U$. By Lemma 3.1, there is an arithmetic progression $\{cn + x\} \in \mathcal{B}$ with $\{cn + x\} \subset U$ and $\Theta(c) \subset \Theta(x)$. Since $x \in \mathbb{N} \setminus \{pn\}$, we have (p, x) = 1. So, (p, c) = 1, too. Using the Chinese Remainder Theorem (CRT), we obtain

$$\emptyset \neq \{cn+x\} \cap \{p^kn+b\} \subset U \cap \{p^kn+b\},\$$

whence $x \in cl\{p^k n + b\}$.

Finally, observe that conditions (i) and (ii) are evident. Moreover, since the arithmetic progression $\{pn + b\}$ is open, we have $p \equiv b \pmod{p}$. So, $cl\{pn + b\} = \{pn\} \cup (\mathbb{N} \setminus \{pn\}) = \mathbb{N}$, whence condition (iii) holds, too.

Theorem 3.5.

Let $a = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ be the prime power factorization of a. Then $cl\{an + b\} = \bigcap_{i=1}^k cl\{p_i^{\alpha_i}n + b\}$.

Proof. First observe

$$\{an+b\} = \bigcap_{i=1}^{k} \left\{ p_i^{\alpha_i} n + b \right\}$$

Hence $\operatorname{cl}\{an+b\} \subset \bigcap_{i=1}^{k} \operatorname{cl}\{p_{i}^{\alpha_{i}}n+b\}.$

Now we will show the opposite inclusion. Assume $x \in \bigcap_{i=1}^{k} cl \{p_i^{\alpha_i} n + b\}$. Then, by Theorem 3.4, $x \in \bigcap_{i=1}^{k} (\{p_i^{\alpha_i} n + b_i\} \cup (\mathbb{N} \setminus \{p_i n\}))$, where $b_i \equiv b \pmod{p_i^{\alpha_i}}$ and $b_i \leq p_i^{\alpha_i}$ for each $i \in \{1, \ldots, k\}$. Fix an open set U such that $x \in U$. By Lemma 3.1, there is an arithmetic progression $\{cn + x\} \in \mathcal{B}$ with $\{cn + x\} \subset U$. Hence $\Theta(c) \subset \Theta(x)$. We consider three cases.

Case 1: $x \in \bigcap_{i=1}^{k} \{p_i^{\alpha_i}n + b_i\}$. By CRT, there is exactly one $s \in \mathbb{N}$ such that $1 \le s \le p_1^{\alpha_1} \dots p_k^{\alpha_k}$ and

$$\bigcap_{i=1}^{k} \{ p_i^{\alpha_i} n + b_i \} = \{ (p_1^{\alpha_1} \dots p_k^{\alpha_k}) n + s \} = \{ an + s \}.$$

Since $b_i \equiv b \pmod{p_i^{\alpha_i}}$ and $b_i \leq p_i^{\alpha_i}$ for each $i \in \{1, \dots, k\}$, we have $\{p_i^{\alpha_i}n + b\} \subset \{p_i^{\alpha_i}n + b_i\}$ for each $i \in \{1, \dots, k\}$. Hence

$$\{an+b\} = \bigcap_{i=1}^{k} \{p_i^{\alpha_i}n+b\} \subset \bigcap_{i=1}^{k} \{p_i^{\alpha_i}n+b_i\} = \{an+s\}.$$

So, $s \equiv b \pmod{a}$. By Lemma 3.2, we obtain that $cl\{an+b\} = cl\{an+s\}$. Consequently, $x \in \{an+s\} \subset cl\{an+s\} = cl\{an+b\}$.

Case 2: $x \in \bigcap_{i=1}^{k} (\mathbb{N} \setminus \{p_{i}n\})$. Since $\bigcap_{i=1}^{k} (\mathbb{N} \setminus \{p_{i}n\}) = \mathbb{N} \setminus \bigcup_{i=1}^{k} \{p_{i}n\}$, we have $x \notin \bigcup_{i=1}^{k} \{p_{i}n\}$. So, $(p_{i}, x) = 1$ for each $i \in \{1, \ldots, k\}$. Hence $(p_{i}, c) = 1$ for each $i \in \{1, \ldots, k\}$, which implies (a, c) = 1. By CRT,

$$\emptyset \neq \{cn + x\} \cap \{an + b\} \subset U \cap \{an + b\}.$$

Consequently, $x \in cl\{an + b\}$.

Case 3: There are a number $r \in \{1, ..., k-1\}$ and a permutation $\{\sigma_1, ..., \sigma_k\}$ of the set $\{1, ..., k\}$ such that $x \in \bigcap_{i=1}^r \{p_{\sigma_i}^{\alpha_{\sigma_i}}n + b_{\sigma_i}\} \cap \bigcap_{i=r+1}^k (\mathbb{N} \setminus \{p_{\sigma_i}n\})$. By CRT, there is exactly one $s \in \mathbb{N}$ such that $1 \leq s \leq p_{\sigma_1}^{\alpha_{\sigma_1}} \dots p_{\sigma_r}^{\alpha_{\sigma_r}}$ and

$$\bigcap_{i=1}^{\prime} \left\{ p_{\sigma_i}^{\alpha_{\sigma_i}} n + b_{\sigma_i} \right\} = \left\{ \left(p_{\sigma_1}^{\alpha_{\sigma_1}} \dots p_{\sigma_r}^{\alpha_{\sigma_r}} \right) n + s \right\}$$

So,

$$x \in \left\{ \left(p_{\sigma_1}^{\alpha_{\sigma_1}} \dots p_{\sigma_r}^{\alpha_{\sigma_r}} \right) n + s \right\} \cap \left(\mathbb{N} \setminus \bigcup_{i=r+1}^k \{ p_{\sigma_i} n \} \right).$$

Define $a_1 = p_{\sigma_1}^{\alpha_{\sigma_1}} \dots p_{\sigma_r}^{\alpha_{\sigma_r}}$ and $a_2 = p_{\sigma_{r+1}}^{\alpha_{\sigma_{r+1}}} \dots p_{\sigma_k}^{\alpha_{\sigma_k}}$. Then $(a_1, a_2) = 1$. Moreover, $(p_{\sigma_i}, x) = 1$ for each $i \in \{r + 1, \dots, k\}$. Hence $(p_{\sigma_i}, c) = 1$ for each $i \in \{r + 1, \dots, k\}$, which implies $(a_2, c) = 1$. Since $b_{\sigma_i} \equiv b \pmod{p_{\sigma_i}^{\alpha_{\sigma_i}}}$ and $b_{\sigma_i} \leq p_{\sigma_i}^{\alpha_{\sigma_i}}$ for each $i \in \{1, \dots, r\}$, we obtain that $\{p_{\sigma_i}^{\alpha_{\sigma_i}} n + b\} \subset \{p_{\sigma_i}^{\alpha_{\sigma_i}} + b_{\sigma_i}\}$ for each $i \in \{1, \dots, r\}$. So,

$$\{a_1n+b\} = \bigcap_{i=1}^r \{p_{\sigma_i}^{\alpha_{\sigma_i}}n+b\} \subset \bigcap_{i=1}^r \{p_{\sigma_i}^{\alpha_{\sigma_i}}n+b_{\sigma_i}\} = \{a_1n+s\}.$$

Hence

$$\{a_1n+s\} \cap \{a_2n+b\} = \{an+b\}.$$
(1)

Since $x \in \{a_1n + s\}$, we have $\{a_1n + s\} \cap \{cn + x\} \neq \emptyset$. It is known that nonempty intersection of two infinite arithmetic progressions is an infinite arithmetic progression. Therefore

$${a_1n + s} \cap {cn + x} = {dn + e},$$
 where $d = \text{lcm}(c, a_1).$

Moreover, if $(c, a_2) = 1$ and $(a_1, a_2) = 1$, then $(d, a_2) = 1$. So, by CRT and condition (1), we obtain

$$\emptyset \neq \{dn + e\} \cap \{a_2n + b\} = \{a_1n + s\} \cap \{cn + x\} \cap \{a_2n + b\} = \{cn + x\} \cap \{an + b\} \subset U \cap \{an + b\}.$$

Consequently, $x \in cl\{an + b\}$.

Theorem 3.6.

Let $a = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ be the prime power factorization of a. Define

$$A = \{ l \le a : (p_i, l) = 1 \text{ or } l \equiv b \pmod{p_i^{\alpha_i}} \text{ for each } i \in \{1, \dots, k\} \}.$$

Then $cl\{an + b\} = \bigcup_{l \in A} \{an + l\}$. In particular, if a is square-free and the arithmetic progression $\{an + b\}$ is open, then $cl\{an + b\} = \mathbb{N}$.

Proof. First assume $x \in cl\{an + b\}$. By Theorems 3.5 and 3.4, respectively,

$$\operatorname{cl}\{an+b\} = \bigcap_{i=1}^{k} \operatorname{cl}\{p_{i}^{\alpha_{i}}n+b\} = \bigcap_{i=1}^{k} \left(\{p_{i}^{\alpha_{i}}n+b_{i}\} \cup (\mathbb{N}\setminus\{p_{i}n\})\right),$$

where $b_i \equiv b \pmod{p_i^{\alpha_i}}$ and $b_i \leq p_i^{\alpha_i}$ for each $i \in \{1, ..., k\}$. We consider three cases.

Case 1: $x \in \bigcap_{i=1}^{k} \{ p_i^{\alpha_i} n + b_i \}$. By CRT, there is exactly one $l \in \mathbb{N}$ such that $1 \le l \le p_1^{\alpha_1} \dots p_k^{\alpha_k}$ and

$$\bigcap_{i=1}^{k} \left\{ p_i^{\alpha_i} n + b_i \right\} = \left\{ \left(p_1^{\alpha_1} \dots p_k^{\alpha_k} \right) n + l \right\} = \{an+l\}.$$

Since $b_i \equiv b \pmod{p_i^{\alpha_i}}$ and $b_i \leq p_i^{\alpha_i}$ for each $i \in \{1, \dots, k\}$, we have $\{p_i^{\alpha_i}n + b\} \subset \{p_i^{\alpha_i}n + b_i\}$ for each $i \in \{1, \dots, k\}$. Hence

$$\{an+b\} = \bigcap_{i=1}^{k} \{p_i^{\alpha_i}n+b\} \subset \bigcap_{i=1}^{k} \{p_i^{\alpha_i}n+b_i\} = \{an+l\},\$$

which proves $l \equiv b \pmod{a}$. Consequently, $l \equiv b \pmod{p_i^{\alpha_i}}$ for each $i \in \{1, ..., k\}$. Since $l \leq a$, we obtain that $l \in A$, whence $x \in \bigcup_{l \in A} \{an + l\}$.

Case 2: $x \in \bigcap_{i=1}^{k} (\mathbb{N} \setminus \{p_i n\})$. Observe

$$\bigcap_{i=1}^{k} (\mathbb{N} \setminus \{p_i n\}) = \bigcap_{i=1}^{k} \bigcup_{d=1}^{p_i - 1} \bigcup_{t=0}^{p_i^{\alpha_i - 1} - 1} \{p_i^{\alpha_i} n + (p_i t + d)\}.$$

So, for each $i \in \{1, \ldots, k\}$ there are $d_i \in \{1, \ldots, p_i - 1\}$ and $t_i \in \{0, \ldots, p^{\alpha_i - 1} - 1\}$ such that $x \in \{p_i^{\alpha_i} n + (p_i t_i + d_i)\}$. This implies $x \in \bigcap_{i=1}^k \{p_i^{\alpha_i} n + (p_i t_i + d_i)\}$. By CRT, there is exactly one $l \in \mathbb{N}$ such that $1 \le l \le p_1^{\alpha_1} \dots p_k^{\alpha_k}$ and

$$\bigcap_{i=1}^{k} \{ p_i^{\alpha_i} n + (p_i t_i + d_i) \} = \{ (p_1^{\alpha_1} \dots p_k^{\alpha_k}) n + l \} = \{ an + l \}.$$

Moreover, since $d_i < p_i$ for each $i \in \{1, ..., k\}$, we have $(d_i, p_i) = 1$ for each $i \in \{1, ..., k\}$. Therefore, $(p_i t_i + d_i, p_i) = 1$ for each $i \in \{1, ..., k\}$ and finally, $(l, p_i) = 1$ for each $i \in \{1, ..., k\}$. This proves that $l \in A$, whence $x \in \bigcup_{l \in A} \{an + l\}$.

Case 3: There are a number $r \in \{1, ..., k-1\}$ and a permutation $\{\sigma_1, ..., \sigma_k\}$ of the set $\{1, ..., k\}$ such that $x \in \bigcap_{i=1}^r \{p_{\sigma_i}^{\alpha_{\sigma_i}} n + b_{\sigma_i}\} \cap \bigcap_{i=r+1}^k (\mathbb{N} \setminus \{p_{\sigma_i} n\})$. By CRT, there is exactly one $s \in \mathbb{N}$ such that $1 \leq s \leq p_{\sigma_1}^{\alpha_{\sigma_1}} \dots p_{\sigma_r}^{\alpha_{\sigma_r}}$ and $\bigcap_{i=1}^r \{p_{\sigma_i}^{\alpha_{i_i}} n + b_{\sigma_i}\} = \{(p_{\sigma_1}^{\alpha_{i_1}} \dots p_{\sigma_r}^{\alpha_{\sigma_r}}) n + s\}$. Moreover,

$$\bigcap_{i=r+1}^{k} (\mathbb{N} \setminus \{p_{\sigma_i}n\}) = \bigcap_{i=r+1}^{k} \bigcup_{d=1}^{p_{\sigma_i}-1} \bigcup_{t=0}^{\alpha_{\sigma_i}-1} \{p_{\sigma_i}^{\alpha_{\sigma_i}}n + (p_{\sigma_i}t+d)\}$$

So, for each $i \in \{r + 1, ..., k\}$ there are $d_i \in \{1, ..., p_{\sigma_i} - 1\}$ and $t_i \in \{0, ..., p^{\alpha_{\sigma_i} - 1} - 1\}$ such that $x \in \{p_{\sigma_i}^{\alpha_{\sigma_i}}n + (p_{\sigma_i}t_i + d_i)\}$. Therefore,

$$x \in \left\{ \left(p_{\sigma_1}^{\alpha_{\sigma_1}} \dots p_{\sigma_r}^{\alpha_{\sigma_r}} \right) n + s \right\} \cap \bigcap_{i=r+1}^k \left\{ p_{\sigma_i}^{\alpha_{\sigma_i}} n + \left(p_{\sigma_i} t_i + d_i \right) \right\}.$$

By CRT, there is exactly one $z \in \mathbb{N}$ such that $1 \le z \le p_{\sigma_{r+1}}^{\alpha_{\sigma_r+1}} \dots p_{\sigma_k}^{\alpha_{\sigma_k}}$ and

$$x \in \left\{ \left(p_{\sigma_1}^{\alpha_{\sigma_1}} \dots p_{\sigma_r}^{\alpha_{\sigma_r}} \right) n + s \right\} \cap \left\{ \left(p_{\sigma_{r+1}}^{\alpha_{\sigma_{r+1}}} \dots p_{\sigma_k}^{\alpha_{\sigma_k}} \right) n + z \right\}.$$

Now, using once more CRT we obtain that there is exactly one positive integer $l \le a$ such that $x \in \{an+l\}$. Additionally, since $(d_i, p_{\sigma_i}) = 1$ for each $i \in \{r + 1, ..., k\}$, we have $(p_{\sigma_i}t_i + d_i, p_{\sigma_i}) = 1$ for each $i \in \{r + 1, ..., k\}$ and finally, $(p_{\sigma_{r+1}} \dots p_{\sigma_k}, z) = 1$. So, it is easy to see that

$$l \equiv s \left(\mod p_{\sigma_1}^{\alpha_{\sigma_1}} \dots p_{\sigma_r}^{\alpha_{\sigma_r}} \right) \quad \text{and} \quad (p_{\sigma_{r+1}} \dots p_{\sigma_k}, l) = 1.$$
(2)

Since $b_{\sigma_i} \equiv b \pmod{p_{\sigma_i}^{\alpha_{\sigma_i}}}$ and $b_{\sigma_i} \leq p_{\sigma_i}^{\alpha_{\sigma_i}}$ for each $i \in \{1, \dots, r\}$, we have $\{p_{\sigma_i}^{\alpha_{\sigma_i}}n + b\} \subset \{p_{\sigma_i}^{\alpha_{\sigma_i}}n + b_{\sigma_i}\}$ for each $i \in \{1, \dots, r\}$. Hence

$$\left\{ \left(p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \dots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}} \right) n + b \right\} = \bigcap_{i=1}^{r} \left\{ p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n + b \right\} \subset \bigcap_{i=1}^{r} \left\{ p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n + b_{\sigma_{i}} \right\} = \left\{ \left(p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \dots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}} \right) n + s \right\},$$

which implies

$$s \equiv b \left(\mod p_{\sigma_1}^{\alpha_{\sigma_1}} \dots p_{\sigma_r}^{\alpha_{\sigma_r}} \right). \tag{3}$$

By conditions (2) and (3), $l \equiv b \pmod{p_{\sigma_1}^{\alpha_{\sigma_1}} \dots p_{\sigma_r}^{\alpha_{\sigma_r}}}$, whence $l \equiv b \pmod{p_{\sigma_i}^{\alpha_{\sigma_i}}}$ for each $i \in \{1, \dots, r\}$. Moreover, by (2), $(p_{\sigma_i}, l) = 1$ for each $i \in \{r + 1, \dots, k\}$. Consequently, $l \in A$, whence $x \in \bigcup_{l \in A} \{an + l\}$. This completes the first part of the proof.

Now we will show the opposite inclusion. Assume $x \in \bigcup_{l \in A} \{an + l\}$. Then $x \in \{an + l\}$ for some $l \in A$. Observe

$$\{an+l\} = \{(p_1^{\alpha_1} \dots p_k^{\alpha_k})n+l\} = \bigcap_{i=1}^k \{p_i^{\alpha_i}n+l\}.$$
(4)

We will show

$$\{p_i^{\alpha_i}n+l\} \subset \operatorname{cl}\{p_i^{\alpha_i}n+b\} \quad \text{for each} \quad i \in \{1, \dots, k\}.$$
(5)

Fix $i \in \{1, ..., k\}$. Condition $l \in A$ implies $(p_i, l) = 1$ or $l \equiv b \pmod{p_i^{\alpha_i}}$. If $(p_i, l) = 1$, then $\{p_i^{\alpha_i}n + l\} \subset \mathbb{N} \setminus \{p_in\}$. By Theorem 3.4, $\mathbb{N} \setminus \{p_in\} \subset \operatorname{cl} \{p_i^{\alpha_i}n + b\}$, which proves that $\{p_i^{\alpha_i}n + l\} \subset \operatorname{cl} \{p_i^{\alpha_i}n + b\}$. If $l \equiv b \pmod{p_i^{\alpha_i}}$, then by Lemma 3.2, $\operatorname{cl} \{p_i^{\alpha_i}n + b\} = \operatorname{cl} \{p_i^{\alpha_i}n + l\}$. Therefore, $\{p_i^{\alpha_i}n + l\} \subset \operatorname{cl} \{p_i^{\alpha_i}n + b\}$, which completes the proof of (5). So, using (4), (5), and Theorem 3.5 we obtain

$$x \in \{an+l\} = \bigcap_{i=1}^{k} \{p_i^{\alpha_i}n+l\} \subset \bigcap_{i=1}^{k} \operatorname{cl} \{p_i^{\alpha_i}n+b\} = \operatorname{cl} \{an+b\}.$$

Finally, observe that if *a* is square-free, then $a = p_1 \dots p_k$. Since

$$\{an+b\} = \bigcap_{i=1}^{k} \{p_i n + b\}$$

and $\{an + b\}$ is open, $\{p_in + b\}$ is also open for each $i \in \{1, ..., k\}$. So, Theorem 3.5 and condition (iii) of Theorem 3.4 imply

$$\operatorname{cl}\{an+b\} = \bigcap_{i=1}^{k} \operatorname{cl}\{p_{i}n+b\} = \mathbb{N}.$$

This completes the proof.

Acknowledgements

Research is supported by Kazimierz Wielki University.

References

- Brown M., A countable connected Hausdorff space, In: Cohen L.M., The April Meeting in New York, Bull. Amer. Math. Soc., 1953, 59(4), 367
- [2] Furstenberg H., On the Infinitude of primes, Amer. Math. Monthly, 1955, 62(5), 353
- [3] Golomb S.W., A connected topology for the integers, Amer. Math. Monthly, 1959, 66(8), 663-665
- [4] Kelley J.L., General Topology, Grad. Texts in Math., 27, Springer, New York-Berlin, 1975
- [5] Kirch A.M., A countable, connected, locally connected Hausdorff space, Amer. Math. Monthly, 1969, 76(2), 169–171
- [6] LeVeque W.J., Topics in Number Theory, I–II, Dover, Mineola, 2002
- [7] Rizza G.B., A topology for the set of nonnegative integers, Riv. Mat. Univ. Parma, 1993, 2, 179–185
- [8] Szczuka P., The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies, Demonstratio Math., 2010, 43(4), 899–909
- [9] Szczuka P., Connections between connected topological spaces on the set of positive integers, Cent. Eur. J. Math., 2013, 11(5), 876–881
- [10] Szczuka P., Regular open arithmetic progressions in connected topological spaces on the set of positive integers, Glas. Mat. (in press)