The closures of arithmetic progressions in the common division topology on the set of positive integers

Paulina Szczuka ${ }^{\text {* }}$

1 Kazimierz Wielki University, Institute of Mathematics, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland

Received 25 September 2013 ; accepted 7 January 2014

Abstract

In this paper we characterize the closures of arithmetic progressions in the topology \mathcal{T} on the set of positive integers with the base consisting of arithmetic progressions $\{a n+b\}$ such that if the prime number p is a factor of a, then it is also a factor of b. The topology \mathcal{T} is called the common division topology.

MGC: $\quad 54 \mathrm{~A} 05,11 \mathrm{~B} 25,11 \mathrm{~A} 41,11 \mathrm{~A} 05$ Keywords: The common division topology • Closures • Arithmetic progressions © Versita Sp. z o.o.

1. Preliminaries

The letters $\mathbb{N}, \mathbb{N}_{0}$ and \mathcal{P} denote the sets of positive integers, non-negative integers and primes, respectively. For a set A we use the symbol cl A to denote the closure of A. The symbol $\Theta(a)$ denotes the set of all prime factors of $a \in \mathbb{N}$. For all $a, b \in \mathbb{N}$, we use (a, b) and $\operatorname{Icm}(a, b)$ to denote the greatest common divisor of a and b and the least common multiple of a and b, respectively. Moreover, for all $a, b \in \mathbb{N}$, the symbols $\{a n+b\}$ and $\{a n\}$ stand for the infinite arithmetic progressions:

$$
\{a n+b\} \stackrel{\mathrm{df}}{=} a \cdot \mathbb{N}_{0}+b \quad \text { and } \quad\{a n\} \stackrel{\mathrm{df}}{=} a \cdot \mathbb{N} .
$$

Hence, clearly, $\{a n\}=\{a n+a\}$. For the basic results and notions concerning topology and number theory we refer the reader to the monographs of Kelley [4] and LeVeque [6], respectively.

[^0]
2. Introduction

In 1955 Furstenberg [2] defined the base of a topology on the set of integers by means of all arithmetic progressions and gave an elegant topological proof of the infinitude of primes. In 1959 Golomb [3] presented a similar proof of the infinitude of primes using a topology \mathcal{D} on \mathbb{N} with the base $\mathcal{B}_{G}=\{\{a n+b\}:(a, b)=1\}$ defined in 1953 by Brown [1]. Ten years later Kirch [5] defined a topology \mathcal{D}^{\prime} on \mathbb{N}, weaker than Golomb's topology \mathcal{D}, with the base $\mathcal{B}_{K}=\{\{a n+b\}:(a, b)=1, a$ is square-free $\}$. Both topologies \mathcal{D} and \mathcal{D}^{\prime} are Hausdorff, the set \mathbb{N} is connected in these topologies and locally connected in the topology \mathcal{D}^{\prime}, but it is not locally connected in the topology \mathcal{D} (see [3,5]). Moreover, the set \mathbb{N} is semiregular in the stronger topology \mathcal{D} and it is not semiregular in the weaker topology \mathcal{D}^{\prime} (see [10]).

In 1993 Rizza [7] introduced the division topology \mathcal{T}^{\prime} on \mathbb{N} as follows: for $X \subset \mathbb{N}$ he put

$$
g(X)=\mathrm{cl} X=\bigcup_{x \in X} D(x), \quad \text { where } \quad D(x)=\{y \in \mathbb{N}: y \mid x\} .
$$

The mapping g forms a topology \mathcal{T}^{\prime} on \mathbb{N}. It is easy to see that the family $\mathcal{B}^{\prime}=\{\{a n\}\}$ is a basis for this topology. In [9] the author defined the common division topology \mathcal{T} on \mathbb{N}, stronger than the division topology \mathcal{T}^{\prime}, with the base $\mathcal{B}=\{\{a n+b\}: \Theta(a) \subset \Theta(b)\}$. Both topologies \mathcal{T} and \mathcal{T}^{\prime} are T_{0} and they are not T_{1}, the set \mathbb{N} is connected in these topologies and locally connected in the topology \mathcal{T}^{\prime}, but it is not locally connected in the topology \mathcal{T} (see [7, 9]). Moreover, the set \mathbb{N} is semiregular in the stronger topology \mathcal{T} and it is not semiregular in the weaker topology \mathcal{T}^{\prime} (see [10]).
Since 2010 the author has examined properties of arithmetic progressions in the above four topologies. It was already shown that the base of Golomb's topology \mathcal{D} consists of all arithmetic progressions that are connected in the common division topology \mathcal{T}, and conversely, all arithmetic progressions connected in \mathcal{T} form a basis for \mathcal{D} (see [9]). Moreover, it turned out that all arithmetic progressions are connected in topologies \mathcal{D}^{\prime} and \mathcal{T}^{\prime} (see [8, Theorem 3.5] and [9, Theorem 4.1], respectively). Recently the author gave a characterization of regular open arithmetic progressions in these topologies (see [10]).

In this paper we continue studies concerning properties of arithmetic progressions, namely, we characterize closures of arithmetic progressions in the common division topology \mathcal{T} on \mathbb{N}. From now on we will only deal with the common division topology and to simplify the notation the symbol \mathcal{T} will be omitted.

3. Main results

We start with two simple technical lemmas.

Lemma 3.1.

Assume that U is an open set. If $c \in U$, then there is an arithmetic progression $\{a n+c\} \in \mathcal{B}$ such that $\{a n+c\} \subset U$.

Proof. Let $c \in U$. Since the set U is open, there is an arithmetic progression $\{a n+b\} \in \mathcal{B}$ such that $c \in\{a n+b\} \subset$ U and $\Theta(a) \subset \Theta(b)$. So, $\{a n+c\} \subset\{a n+b\} \subset U$ and $\Theta(a) \subset \Theta(c)$. This implies that $\{a n+c\} \in \mathcal{B}$.

Lemma 3.2.

If $b_{1} \equiv b(\bmod a)$, then $\mathrm{cl}\{a n+b\}=\operatorname{cl}\left\{a n+b_{1}\right\}$.

Proof. Without loss of generality we can assume that $b_{1}<b$. Since $\{a n+b\} \subset\left\{a n+b_{1}\right\}$, we have $c l\{a n+b\} \subset$ cl $\left\{a n+b_{1}\right\}$. So, it is sufficient to show the opposite implication.

Let $x \in \operatorname{cl}\left\{a n+b_{1}\right\}$. Fix an open set U with $x \in U$. By Lemma 3.1, there is a basic arithmetic progression $\{c n+x\} \subset U$. Since $\{c n+x\}$ contains x and it is open, $\{c n+x\} \cap\left\{a n+b_{1}\right\} \neq \emptyset$. Taking into account that a nonempty intersection of
two infinite arithmetic progressions is an infinite arithmetic progression, we can conclude that the set $\{c n+x\} \cap\left\{a n+b_{1}\right\}$ is infinite. Simultaneously, the set $\left\{a n+b_{1}\right\} \backslash\{a n+b\}$ is finite, which implies

$$
\emptyset \neq\{a n+b\} \cap\{c n+x\} \subset\{a n+b\} \cap U .
$$

This proves that $x \in \operatorname{cl}\{a n+b\}$.

The proof of next remark is evident.

Remark 3.3.

cl $\{n+b\}=\mathbb{N}$ for each $b \in \mathbb{N}$.

From now on in all theorems of this paper we assume $a>1$.

Theorem 3.4.

Assume $p \in \mathcal{P}, k \in \mathbb{N}$ and $b_{1} \leq p^{k}$. If $b_{1} \equiv b\left(\bmod p^{k}\right)$, then $c l\left\{p^{k} n+b\right\}=\left\{p^{k} n+b_{1}\right\} \cup(\mathbb{N} \backslash\{p n\})$. In particular,
(i) the arithmetic progression $\{2 n+1\}$ is closed,
(ii) $\operatorname{cl}\{p n\}=\mathbb{N}$ for each $p \in \mathcal{P}$, and
(iii) if the arithmetic progression $\{p n+b\}$ is open, then $\mathrm{cl}\{p n+b\}=\mathbb{N}$ for each $p \in \mathcal{P}$.

Proof. First we will show that $\operatorname{cl}\left\{p^{k} n+b\right\} \subset\left\{p^{k} n+b_{1}\right\} \cup(\mathbb{N} \backslash\{p n\})$. Using the assumptions $b_{1} \leq p^{k}$ and $b_{1} \equiv b\left(\bmod p^{k}\right)$, we obtain

$$
\left\{p^{k} n+b\right\} \subset\left\{p^{k} n+b_{1}\right\} \subset\left\{p^{k} n+b_{1}\right\} \cup(\mathbb{N} \backslash\{p n\}) .
$$

If $(p, b)=1$, then $\left(p, b_{1}\right)=1$, too. Hence $\left\{p^{k} n+b_{1}\right\} \subset \mathbb{N} \backslash\{p n\}$ and the set $\mathbb{N} \backslash\{p n\}=\left\{p^{k} n+b_{1}\right\} \cup(\mathbb{N} \backslash\{p n\})$ is closed. This proves that $c l\left\{p^{k} n+b\right\} \subset\left\{p^{k} n+b_{1}\right\} \cup(\mathbb{N} \backslash\{p n\})$. So, we can assume $p \mid b$. Then, obviously, $p \mid b_{1}$, whence $\left\{p^{k} n+b_{1}\right\} \subset\{p n\}$. Since

$$
\{p n\} \backslash\left\{p^{k} n+b_{1}\right\}=\bigcup_{i=1}^{p^{k-1}}\left\{p^{k} n+i p\right\} \backslash\left\{p^{k} n+b_{1}\right\}=\bigcup_{i \in\left\{1, \ldots, p^{k-1}\right\} \backslash\left\{b_{1}\right\}}\left\{p^{k} n+i p\right\}
$$

and all arithmetic progressions $\left\{p^{k} n+i p\right\}$ are open, the set $\left\{p^{k} n+b_{1}\right\} \cup(\mathbb{N} \backslash\{p n\})=\mathbb{N} \backslash\left(\{p n\} \backslash\left\{p^{k} n+b_{1}\right\}\right)$ is closed. Consequently, $\mathrm{cl}\left\{p^{k} n+b\right\} \subset\left\{p^{k} n+b_{1}\right\} \cup(\mathbb{N} \backslash\{p n\})$.

Now we will show the opposite inclusion. Let $x \in\left\{p^{k} n+b_{1}\right\} \cup(\mathbb{N} \backslash\{p n\})$. We consider two cases.
Case 1: $x \in\left\{p^{k} n+b_{1}\right\}$. Since $b_{1} \equiv b\left(\bmod p^{k}\right)$, by Lemma 3.2, $\operatorname{cl}\left\{p^{k} n+b\right\}=\operatorname{cl}\left\{p^{k} n+b_{1}\right\}$. So, $x \in\left\{p^{k} n+b_{1}\right\} \subset$ $\mathrm{cl}\left\{p^{k} n+b_{1}\right\}=\operatorname{cl}\left\{p^{k} n+b\right\}$.

Case 2: $x \in \mathbb{N} \backslash\{p n\}=\bigcup_{d \in\{1, \ldots, p-1\}}\{p n+d\}$. Then $x \in\{p n+d\}$ for some $d \in\{1, \ldots, p-1\}$. Fix an open set U such that $x \in U$. By Lemma 3.1, there is an arithmetic progression $\{c n+x\} \in \mathcal{B}$ with $\{c n+x\} \subset U$ and $\Theta(c) \subset \Theta(x)$. Since $x \in \mathbb{N} \backslash\{p n\}$, we have $(p, x)=1$. So,$(p, c)=1$, too. Using the Chinese Remainder Theorem (CRT), we obtain

$$
\emptyset \neq\{c n+x\} \cap\left\{p^{k} n+b\right\} \subset U \cap\left\{p^{k} n+b\right\}
$$

whence $x \in \operatorname{cl}\left\{p^{k} n+b\right\}$.
Finally, observe that conditions (i) and (ii) are evident. Moreover, since the arithmetic progression $\{p n+b\}$ is open, we have $p \equiv b(\bmod p)$. So, $c l\{p n+b\}=\{p n\} \cup(\mathbb{N} \backslash\{p n\})=\mathbb{N}$, whence condition (iii) holds, too.

Theorem 3.5.

Let $a=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ be the prime power factorization of a. Then $\mathrm{cl}\{a n+b\}=\bigcap_{i=1}^{k} \mathrm{cl}\left\{p_{i}^{\alpha_{i}} n+b\right\}$.

Proof. First observe

$$
\{a n+b\}=\bigcap_{i=1}^{k}\left\{p_{i}^{\alpha_{i}} n+b\right\} .
$$

Hence $\mathrm{cl}\{a n+b\} \subset \bigcap_{i=1}^{k} \mathrm{cl}\left\{p_{i}^{\alpha_{i}} n+b\right\}$.
Now we will show the opposite inclusion. Assume $x \in \bigcap_{i=1}^{k} \mathrm{cl}\left\{p_{i}^{\alpha_{i}} n+b\right\}$. Then, by Theorem 3.4, $x \in \bigcap_{i=1}^{k}\left(\left\{p_{i}^{\alpha_{i}} n+b_{i}\right\}\right.$ $\left.\cup\left(\mathbb{N} \backslash\left\{p_{i} n\right\}\right)\right)$, where $b_{i} \equiv b\left(\bmod p_{i}^{\alpha_{i}}\right)$ and $b_{i} \leq p_{i}^{\alpha_{i}}$ for each $i \in\{1, \ldots, k\}$. Fix an open set U such that $x \in U$. By Lemma 3.1, there is an arithmetic progression $\{c n+x\} \in \mathcal{B}$ with $\{c n+x\} \subset U$. Hence $\Theta(c) \subset \Theta(x)$. We consider three cases.

Case 1: $x \in \bigcap_{i=1}^{k}\left\{p_{i}^{\alpha_{i}} n+b_{i}\right\} . \quad B y$ CRT, there is exactly one $s \in \mathbb{N}$ such that $1 \leq s \leq p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ and

$$
\bigcap_{i=1}^{k}\left\{p_{i}^{\alpha_{i}} n+b_{i}\right\}=\left\{\left(p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}\right) n+s\right\}=\{a n+s\} .
$$

Since $b_{i} \equiv b\left(\bmod p_{i}^{\alpha_{i}}\right)$ and $b_{i} \leq p_{i}^{\alpha_{i}}$ for each $i \in\{1, \ldots, k\}$, we have $\left\{p_{i}^{\alpha_{i}} n+b\right\} \subset\left\{p_{i}^{\alpha_{i}} n+b_{i}\right\}$ for each $i \in\{1, \ldots, k\}$. Hence

$$
\{a n+b\}=\bigcap_{i=1}^{k}\left\{p_{i}^{\alpha_{i}} n+b\right\} \subset \bigcap_{i=1}^{k}\left\{p_{i}^{\alpha_{i}} n+b_{i}\right\}=\{a n+s\} .
$$

So, $s \equiv b(\bmod a)$. By Lemma 3.2, we obtain that $c l\{a n+b\}=c l\{a n+s\}$. Consequently, $x \in\{a n+s\} \subset c l\{a n+s\}=$ $c l\{a n+b\}$.

Case 2: $x \in \bigcap_{i=1}^{k}\left(\mathbb{N} \backslash\left\{p_{i} n\right\}\right)$. Since $\bigcap_{i=1}^{k}\left(\mathbb{N} \backslash\left\{p_{i} n\right\}\right)=\mathbb{N} \backslash \bigcup_{i=1}^{k}\left\{p_{i} n\right\}$, we have $x \notin \bigcup_{i=1}^{k}\left\{p_{i} n\right\}$. So,$\left(p_{i}, x\right)=1$ for each $i \in\{1, \ldots, k\}$. Hence $\left(p_{i}, c\right)=1$ for each $i \in\{1, \ldots, k\}$, which implies $(a, c)=1$. By CRT,

$$
\emptyset \neq\{c n+x\} \cap\{a n+b\} \subset U \cap\{a n+b\} .
$$

Consequently, $x \in \mathrm{cl}\{a n+b\}$.
Case 3: There are a number $r \in\{1, \ldots, k-1\}$ and a permutation $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ of the set $\{1, \ldots, k\}$ such that $x \in$ $\bigcap_{i=1}^{r}\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+b_{\sigma_{i}}\right\} \cap \bigcap_{i=r+1}^{k}\left(\mathbb{N} \backslash\left\{p_{\sigma_{i}} n\right\}\right)$. By CRT, there is exactly one $s \in \mathbb{N}$ such that $1 \leq s \leq p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \ldots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}}$ and

$$
\bigcap_{i=1}^{r}\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+b_{\sigma_{i}}\right\}=\left\{\left(p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \ldots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}}\right) n+s\right\}
$$

So,

$$
x \in\left\{\left(p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \ldots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}}\right) n+s\right\} \cap\left(\mathbb{N} \backslash \bigcup_{i=r+1}^{k}\left\{p_{\sigma_{i}} n\right\}\right)
$$

Define $a_{1}=p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \ldots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}}$ and $a_{2}=p_{\sigma_{r+1}}^{\alpha_{\sigma_{r}+1}} \ldots p_{\sigma_{k}}^{\alpha_{\sigma_{k}}}$. Then $\left(a_{1}, a_{2}\right)=1$. Moreover, $\left(p_{\sigma_{i}}, x\right)=1$ for each $i \in\{r+1, \ldots, k\}$. Hence $\left(p_{\sigma_{i}}, c\right)=1$ for each $i \in\{r+1, \ldots, k\}$, which implies $\left(a_{2}, c\right)=1$. Since $b_{\sigma_{i}} \equiv b\left(\bmod p_{\sigma_{i}}^{\alpha_{\sigma_{i}}}\right)$ and $b_{\sigma_{i}} \leq p_{\sigma_{i}}^{\alpha_{\sigma_{i}}}$ for each $i \in\{1, \ldots, r\}$, we obtain that $\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+b\right\} \subset\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}}+b_{\sigma_{i}}\right\}$ for each $i \in\{1, \ldots, r\}$. So,

$$
\left\{a_{1} n+b\right\}=\bigcap_{i=1}^{r}\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+b\right\} \subset \bigcap_{i=1}^{r}\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+b_{\sigma_{i}}\right\}=\left\{a_{1} n+s\right\} .
$$

Hence

$$
\begin{equation*}
\left\{a_{1} n+s\right\} \cap\left\{a_{2} n+b\right\}=\{a n+b\} . \tag{1}
\end{equation*}
$$

Since $x \in\left\{a_{1} n+s\right\}$, we have $\left\{a_{1} n+s\right\} \cap\{c n+x\} \neq \emptyset$. It is known that nonempty intersection of two infinite arithmetic progressions is an infinite arithmetic progression. Therefore

$$
\left\{a_{1} n+s\right\} \cap\{c n+x\}=\{d n+e\}, \quad \text { where } d=\operatorname{lcm}\left(c, a_{1}\right) .
$$

Moreover, if $\left(c, a_{2}\right)=1$ and $\left(a_{1}, a_{2}\right)=1$, then $\left(d, a_{2}\right)=1$. So, by CRT and condition (1), we obtain

$$
\emptyset \neq\{d n+e\} \cap\left\{a_{2} n+b\right\}=\left\{a_{1} n+s\right\} \cap\{c n+x\} \cap\left\{a_{2} n+b\right\}=\{c n+x\} \cap\{a n+b\} \subset \cup \cap\{a n+b\} .
$$

Consequently, $x \in \operatorname{cl}\{a n+b\}$.

Theorem 3.6.

Let $a=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ be the prime power factorization of a. Define

$$
A=\left\{l \leq a:\left(p_{i}, l\right)=1 \text { or } l \equiv b\left(\bmod p_{i}^{\alpha_{i}}\right) \text { for each } i \in\{1, \ldots, k\}\right\} .
$$

Then $c l\{a n+b\}=\bigcup_{l \in A}\{a n+l\}$. In particular, if a is square-free and the arithmetic progression $\{a n+b\}$ is open, then $\operatorname{cl}\{a n+b\}=\mathbb{N}$.

Proof. First assume $x \in \operatorname{cl}\{a n+b\}$. By Theorems 3.5 and 3.4, respectively,

$$
\mathrm{cl}\{a n+b\}=\bigcap_{i=1}^{k} \mathrm{cl}\left\{p_{i}^{\alpha_{i}} n+b\right\}=\bigcap_{i=1}^{k}\left(\left\{p_{i}^{\alpha_{i}} n+b_{i}\right\} \cup\left(\mathbb{N} \backslash\left\{p_{i} n\right\}\right)\right),
$$

where $b_{i} \equiv b\left(\bmod p_{i}^{\alpha_{i}}\right)$ and $b_{i} \leq p_{i}^{\alpha_{i}}$ for each $i \in\{1, \ldots, k\}$. We consider three cases.
Case 1: $x \in \bigcap_{i=1}^{k}\left\{p_{i}^{\alpha_{i}} n+b_{i}\right\}$. By CRT, there is exactly one $l \in \mathbb{N}$ such that $1 \leq l \leq p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ and

$$
\bigcap_{i=1}^{k}\left\{p_{i}^{\alpha_{i}} n+b_{i}\right\}=\left\{\left(p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}\right) n+l\right\}=\{a n+l\} .
$$

Since $b_{i} \equiv b\left(\bmod p_{i}^{\alpha_{i}}\right)$ and $b_{i} \leq p_{i}^{\alpha_{i}}$ for each $i \in\{1, \ldots, k\}$, we have $\left\{p_{i}^{\alpha_{i}} n+b\right\} \subset\left\{p_{i}^{\alpha_{i}} n+b_{i}\right\}$ for each $i \in\{1, \ldots, k\}$. Hence

$$
\{a n+b\}=\bigcap_{i=1}^{k}\left\{p_{i}^{\alpha_{i}} n+b\right\} \subset \bigcap_{i=1}^{k}\left\{p_{i}^{\alpha_{i}} n+b_{i}\right\}=\{a n+l\}
$$

which proves $l \equiv b(\bmod a)$. Consequently, $l \equiv b\left(\bmod p_{i}^{\alpha_{i}}\right)$ for each $i \in\{1, \ldots, k\}$. Since $l \leq a$, we obtain that $l \in A$, whence $x \in \bigcup_{l \in A}\{a n+l\}$.
Case 2: $x \in \bigcap_{i=1}^{k}\left(\mathbb{N} \backslash\left\{p_{i} n\right\}\right)$. Observe

$$
\bigcap_{i=1}^{k}\left(\mathbb{N} \backslash\left\{p_{i} n\right\}\right)=\bigcap_{i=1}^{k} \bigcup_{d=1}^{p_{i}-1} \bigcup_{t=0}^{p_{i}-1}-1 \quad\left\{p_{i}^{\alpha_{i}} n+\left(p_{i} t+d\right)\right\} .
$$

So, for each $i \in\{1, \ldots, k\}$ there are $d_{i} \in\left\{1, \ldots, p_{i}-1\right\}$ and $t_{i} \in\left\{0, \ldots, p^{\alpha_{i}-1}-1\right\}$ such that $x \in\left\{p_{i}^{\alpha_{i}} n+\left(p_{i} t_{i}+d_{i}\right)\right\}$. This implies $x \in \bigcap_{i=1}^{k}\left\{p_{i}^{\alpha_{i}} n+\left(p_{i} t_{i}+d_{i}\right)\right\}$. By CRT, there is exactly one $l \in \mathbb{N}$ such that $1 \leq l \leq p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ and

$$
\bigcap_{i=1}^{k}\left\{p_{i}^{\alpha_{i}} n+\left(p_{i} t_{i}+d_{i}\right)\right\}=\left\{\left(p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}\right) n+l\right\}=\{a n+l\} .
$$

Moreover, since $d_{i}<p_{i}$ for each $i \in\{1, \ldots, k\}$, we have $\left(d_{i}, p_{i}\right)=1$ for each $i \in\{1, \ldots, k\}$. Therefore, $\left(p_{i} t_{i}+d_{i}, p_{i}\right)=1$ for each $i \in\{1, \ldots, k\}$ and finally, $\left(l, p_{i}\right)=1$ for each $i \in\{1, \ldots, k\}$. This proves that $l \in A$, whence $x \in \bigcup_{l \in A}\{a n+l\}$.

Case 3: There are a number $r \in\{1, \ldots, k-1\}$ and a permutation $\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ of the set $\{1, \ldots, k\}$ such that $x \in$ $\bigcap_{i=1}^{r}\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+b_{\sigma_{i}}\right\} \cap \bigcap_{i=r+1}^{k}\left(\mathbb{N} \backslash\left\{p_{\sigma_{i}} n\right\}\right)$. By CRT, there is exactly one $s \in \mathbb{N}$ such that $1 \leq s \leq p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \ldots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}}$ and $\bigcap_{i=1}^{r}\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+b_{\sigma_{i}}\right\}=\left\{\left(p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \ldots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}}\right) n+s\right\}$. Moreover,

$$
\bigcap_{i=r+1}^{k}\left(\mathbb{N} \backslash\left\{p_{\sigma_{i}} n\right\}\right)=\bigcap_{i=r+1}^{k} \bigcup_{d=1}^{p_{\sigma_{i}}-1} \bigcup_{t=0}^{p_{\sigma_{i}} \sigma_{i}-1}-1 \quad\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+\left(p_{\sigma_{i}} t+d\right)\right\} .
$$

So, for each $i \in\{r+1, \ldots, k\}$ there are $d_{i} \in\left\{1, \ldots, p_{\sigma_{i}}-1\right\}$ and $t_{i} \in\left\{0, \ldots, p^{\alpha_{\sigma_{i}}-1}-1\right\}$ such that $x \in\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+\right.$ $\left.\left(p_{\sigma_{i}} t_{i}+d_{i}\right)\right\}$. Therefore,

$$
x \in\left\{\left(p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \ldots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}}\right) n+s\right\} \cap \bigcap_{i=r+1}^{k}\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+\left(p_{\sigma_{i}} t_{i}+d_{i}\right)\right\}
$$

By CRT, there is exactly one $z \in \mathbb{N}$ such that $1 \leq z \leq p_{\sigma_{r+1}}^{\alpha_{\sigma_{r+1}}} \ldots p_{\sigma_{k}}^{\alpha_{\sigma_{k}}}$ and

$$
x \in\left\{\left(p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \ldots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}}\right) n+s\right\} \cap\left\{\left(p_{\sigma_{r+1}}^{\alpha_{\sigma_{r}+1}} \ldots p_{\sigma_{k}}^{\alpha_{\sigma_{k}}}\right) n+z\right\} .
$$

Now, using once more CRT we obtain that there is exactly one positive integer $l \leq a$ such that $x \in\{a n+l\}$. Additionally, since $\left(d_{i}, p_{\sigma_{i}}\right)=1$ for each $i \in\{r+1, \ldots, k\}$, we have $\left(p_{\sigma_{i}} t_{i}+d_{i}, p_{\sigma_{i}}\right)=1$ for each $i \in\{r+1, \ldots, k\}$ and finally, $\left(p_{\sigma_{r+1}} \ldots p_{\sigma_{k}}, z\right)=1$. So, it is easy to see that

$$
\begin{equation*}
l \equiv s\left(\bmod p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \ldots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}}\right) \quad \text { and } \quad\left(p_{\sigma_{r+1}} \ldots p_{\sigma_{k}}, l\right)=1 \tag{2}
\end{equation*}
$$

Since $b_{\sigma_{i}} \equiv b\left(\bmod p_{\sigma_{i}}^{\alpha_{\sigma_{i}}}\right)$ and $b_{\sigma_{i}} \leq p_{\sigma_{i}}^{\alpha_{\sigma_{i}}}$ for each $i \in\{1, \ldots, r\}$, we have $\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+b\right\} \subset\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+b_{\sigma_{i}}\right\}$ for each $i \in\{1, \ldots, r\}$. Hence

$$
\left\{\left(p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \ldots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}}\right) n+b\right\}=\bigcap_{i=1}^{r}\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+b\right\} \subset \bigcap_{i=1}^{r}\left\{p_{\sigma_{i}}^{\alpha_{\sigma_{i}}} n+b_{\sigma_{i}}\right\}=\left\{\left(p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \ldots p_{\sigma_{r}}^{\alpha_{r}}\right) n+s\right\},
$$

which implies

$$
\begin{equation*}
s \equiv b\left(\bmod p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \ldots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}}\right) \tag{3}
\end{equation*}
$$

By conditions (2) and (3), $l \equiv b\left(\bmod p_{\sigma_{1}}^{\alpha_{\sigma_{1}}} \ldots p_{\sigma_{r}}^{\alpha_{\sigma_{r}}}\right)$, whence $l \equiv b\left(\bmod p_{\sigma_{i}}^{\alpha_{\sigma_{i}}}\right)$ for each $i \in\{1, \ldots, r\}$. Moreover, by (2), $\left(p_{\sigma_{i}}, l\right)=1$ for each $i \in\{r+1, \ldots, k\}$. Consequently, $l \in A$, whence $x \in \bigcup_{l \in A}\{a n+l\}$. This completes the first part of the proof.
Now we will show the opposite inclusion. Assume $x \in \bigcup_{l \in A}\{a n+l\}$. Then $x \in\{a n+l\}$ for some $l \in A$. Observe

$$
\begin{equation*}
\{a n+l\}=\left\{\left(p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}\right) n+l\right\}=\bigcap_{i=1}^{k}\left\{p_{i}^{\alpha_{i}} n+l\right\} . \tag{4}
\end{equation*}
$$

We will show

$$
\begin{equation*}
\left\{p_{i}^{\alpha_{i}} n+l\right\} \subset \operatorname{cl}\left\{p_{i}^{\alpha_{i}} n+b\right\} \quad \text { for each } \quad i \in\{1, \ldots, k\} \tag{5}
\end{equation*}
$$

Fix $i \in\{1, \ldots, k\}$. Condition $l \in A$ implies $\left(p_{i}, l\right)=1$ or $l \equiv b\left(\bmod p_{i}^{\alpha_{i}}\right)$. If $\left(p_{i}, l\right)=1$, then $\left\{p_{i}^{\alpha_{i}} n+l\right\} \subset \mathbb{N} \backslash\left\{p_{i} n\right\}$. By Theorem 3.4, $\mathbb{N} \backslash\left\{p_{i} n\right\} \subset \mathrm{cl}\left\{p_{i}^{\alpha_{i}} n+b\right\}$, which proves that $\left\{p_{i}^{\alpha_{i}} n+l\right\} \subset \mathrm{cl}\left\{p_{i}^{\alpha_{i}} n+b\right\}$. If $l \equiv b\left(\bmod p_{i}^{\alpha_{i}}\right)$, then by Lemma 3.2, $\mathrm{cl}\left\{p_{i}^{\alpha_{i}} n+b\right\}=\mathrm{cl}\left\{p_{i}^{\alpha_{i}} n+l\right\}$. Therefore, $\left\{p_{i}^{\alpha_{i}} n+l\right\} \subset \mathrm{cl}\left\{p_{i}^{\alpha_{i}} n+b\right\}$, which completes the proof of (5). So, using (4), (5), and Theorem 3.5 we obtain

$$
x \in\{a n+l\}=\bigcap_{i=1}^{k}\left\{p_{i}^{\alpha_{i}} n+l\right\} \subset \bigcap_{i=1}^{k} \operatorname{cl}\left\{p_{i}^{\alpha_{i}} n+b\right\}=\mathrm{cl}\{a n+b\}
$$

Finally, observe that if a is square-free, then $a=p_{1} \ldots p_{k}$. Since

$$
\{a n+b\}=\bigcap_{i=1}^{k}\left\{p_{i} n+b\right\}
$$

and $\{a n+b\}$ is open, $\left\{p_{i} n+b\right\}$ is also open for each $i \in\{1, \ldots, k\}$. So, Theorem 3.5 and condition (iii) of Theorem 3.4 imply

$$
\mathrm{cl}\{a n+b\}=\bigcap_{i=1}^{k} \operatorname{cl}\left\{p_{i} n+b\right\}=\mathbb{N}
$$

This completes the proof.

Acknowledgements

Research is supported by Kazimierz Wielki University.

References

[1] Brown M., A countable connected Hausdorff space, In: Cohen L.M., The April Meeting in New York, Bull. Amer. Math. Soc., 1953, 59(4), 367
[2] Furstenberg H., On the Infinitude of primes, Amer. Math. Monthly, 1955, 62(5), 353
[3] Golomb S.W., A connected topology for the integers, Amer. Math. Monthly, 1959, 66(8), 663-665
[4] Kelley J.L., General Topology, Grad. Texts in Math., 27, Springer, New York-Berlin, 1975
[5] Kirch A.M., A countable, connected, locally connected Hausdorff space, Amer. Math. Monthly, 1969, 76(2), 169-171
[6] LeVeque W.J., Topics in Number Theory, I-II, Dover, Mineola, 2002
[7] Rizza G.B., A topology for the set of nonnegatlve integers, Riv. Mat. Univ. Parma, 1993, 2, 179-185
[8] Szczuka P., The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies, Demonstratio Math., 2010, 43(4), 899-909
[9] Szczuka P., Connections between connected topological spaces on the set of positive integers, Cent. Eur. J. Math., 2013, 11(5), 876-881
[10] Szczuka P., Regular open arithmetic progressions in connected topological spaces on the set of positive integers, Glas. Mat. (in press)

[^0]: * E-mail: paulinaszczuka@wp.pl

