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A GENERALIZATION OF THE THEOREM OF MAULDIN

Let X be a metric space and let ^ be a proper lY-ideal 
of subsets of X. It will be assumed that all singletons 
^x} , xfi. X , belong to 9 .

Denote by the family of all real-valued functions
defined on X whose set of points of discontinuity belongs
to 3 . For each ordinal <*. , 0 t ф«) be the family
of all pointvise limits of sequences which terms are taken 
form . The first number oi. such that ф^)=
Vill be called the Baire order of the ö'-ideal 3 .
The generalized Baire classes ф  (.3) were considered by Mauldin 
(see C6J,C73,[8]).

In [2] Kuratowski proved that if X complete and sepa­
rable, and *3 denotes the <T-ideal of all sets of the first 
category, then the order of ^ is 1 . In [7] Mauldin proved 
that if 3 denotes the <T-ideal of all subsets of Го, ij o f  
the Lebesgue measure zero, then the order of -3 is UJ1 .
We have obtained the following generalization of this result:

Theorem 1. Let X be a perfect metric space, complete
and separable. Let be a -ideal of subsets of X such that

(1) there is a compact set X 'S X such that XQ $ r
(2) for each countable set A £ X there is a G r set Воsuch that A S B ć J o .

Then for each tf-ideal 3 such that 3 ê tï the order of 3 is £J1 .
Remarks and problems, (a) In the case when X =fO,lJ and

3=3 is the ideal of sets of the measure zero, we obtain
О



118

Mauldin's result.
(b) The condition (1) is fulfilled when X Is looally 

compact. Indeed, then we put as Xq a compact set which Is 
a closure of an open nonempty set . Can the condition Cl ) be 
omitted in the general case?

(c) In [9j Myciel s k i  constructed a cT-ideal of subsets
t

of the Cantor set С which satisfies the condition (2) .
Since X = С is compact, the condition (1) also holds. So 
Theorem 1 can be applied.

(d) Let X be such as in Theorem 1 and moreover let X 
be locally compact. Suppose that 9 is a 6"-ideal of X with 
the order .
Does there ЛГ-ideal exist such that Sé'J and *3О о о
fulfils the condition (2) ?

The proof of Theorem 1 is based on the method presented 
by Mauldin. A new element of the proof is the application of 
the topology $ (3) associated with the ideal 3 . This topology 
was investigated by many authors (comp. [1 J ,[ 1*1, [5З , Г9З) .
New properties oft (̂ ) which were used in the proof of Theorem 
1 will be presented here.

Definition 1. For At X let A ^  be the set of all 
X X such that Vf\A^3 for every neighbourhood V of x,

In turns out that A — A^satisfies all conditions of 
the operator of the derived set and it yields a topology C(3) .

Definition 2. A closed set A,0 0 AS X will be called 
3 -perfect if and only if for eaoh set V such that V f\ A 0 0» 
we have V f\ A if 3 .

Proposition 1. A set A, 0 ^  A ç X is -perfect if and 
only if A = A ^  .

(it means that 1 -perfect sets coincide with perfect 
sets in the topology Vfi)) »

Proposition 2. For each closed set A S X  there is a 
unique decomposition A = BU С into dijoint sets B,C such 
that BfeîJ , and С = 0 or С is tJ -perfect,

Tbat is a generalization of the Cantor-Bendixson Theorem,
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If denote* the S'-ideal of all countable seta, then we have 
the olaaeic formulation. A alnllar result waa obtained by 
Louveau in fl J •
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