Another use of $L R$ and $Q R$ decompositions

Feliks Maniakowski

The aim of this paper is to propose two methods, called $A L$ and $Q L$ in the sequel, of solving of the eigenvalue problem of a given matrix A. The known $L R$ and $Q R$ methods (see e.g. [1]) are not selfcorrecting in the following sense. Each of them constructs a sequence of matrices $A_{1}=$ A, A_{2}, A_{3}, \ldots where A_{k+1} is defined by means of the decomposition of A_{k} into the product of a lower and an upper triangular matrices L_{k}, R_{k} :

$$
\begin{align*}
& A_{k}=L_{k} R_{k}, \\
& A_{k+1}=R_{k} L_{k} \tag{1}
\end{align*}
$$

for $L R$ method and similarly

$$
\begin{align*}
& A_{k}=Q_{k} R_{k}, \tag{2}\\
& A_{k+1}=R_{k} Q_{k}
\end{align*}
$$

for $Q R$ method, with Q_{k} being a unitary matrix. In both processes the matrix A_{k+1} depends in fact on A_{k} only and not on A itself. Thus errors produced during the computation of A_{k} cannot be corrected in the sucessive steps. The methods we propose do not have such a defect.

Definition 1 AL method.
Define $L_{0}=I$ (identity matrix). For $k=0,1,2, \ldots$ let L_{k+1}, R_{k+1} be given by equalities

$$
\begin{equation*}
A L_{k}=L_{k+1} R_{k+1} \tag{3}
\end{equation*}
$$

where L_{k+1} and R_{k+1} are lower and upper matrices respectively, L_{k+1} having 1's on its diagonal.

Definition $2 A Q$ method.
Define

$$
\begin{aligned}
& Q_{0}=I \\
& A Q_{k+1}=Q_{k+1} R_{k+1}(k=0,1,2, \ldots)
\end{aligned}
$$

where Q_{k+1}, is a unitary matrix and R_{k+1} is an upper triagular matrix.
Observe that if the sequences $L_{k}, R_{k}\left(Q_{k}, R_{k}\right.$, respectively) converge and $L=\lim L_{k}, R=\lim R_{k}, Q=\lim Q_{k}$ then

$$
A L=L R \quad(A Q=Q R, \text { respectively })
$$

i.e. the limit matrix R being similar to A, has the same eigenvalues as A has.

The applicability conditions are the same for both $L R$ and $A L$ methods (for $Q R$ and $A Q$, respectively) for any matrix A.

Theorem 3 The $A L$ is applicable to a matrix A iff the $L R$ is, i.e. for all $k=1,2,3, \ldots$ there exist matrices \bar{L}_{k}, \bar{R}_{k} such that

$$
\begin{equation*}
\bar{L}_{0}=I, \bar{A} L_{k}=\bar{L}_{k+1} \bar{R}_{k+1} \tag{4}
\end{equation*}
$$

iff there exist matrices L_{k}, R_{k} such that

$$
\begin{equation*}
A=L_{1} R_{1}, L_{k+1} R_{k+1}=R_{k} L_{k} \tag{5}
\end{equation*}
$$

Moreover, in this case the following equalities hold:

$$
\begin{array}{r}
\bar{L}_{k}=L_{1} L_{2} \ldots L_{k}, \bar{R}_{k}=R_{k}(k=1,2,3, \ldots) \\
L_{k}=L_{k-1}^{-1} L_{k}(k=1,2,3, \ldots) \tag{7}
\end{array}
$$

Proof. Let us assume that $L R$ is applicable to a given matrix A. Then there exist matrices L_{k}, R_{k} satisfying (5). An easy induction on k shows that the matrices L_{k} defined by (6) satisfy the equality (4). Similarly one checks that converse implication holds. So the theorem follows.

Corollary 4 If the $L R$ method is convergent, then the $A L$ method provides the convergent sequence R_{k} and thus provides the eigenvalues of A. Conversely, if the $A L$ method is convergent, then the $L R$ is convergent.

Remark 5 It is easy to check that for the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ the $L R$ method is convergent while $A L$ is not because $L_{k}=\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right]$.
We omit here analogous theorem and corollary dealing with the $Q R$ and $A Q$ methods.

Numerical example 6

The result of applying of the $A Q$ method o the matrix $A=\left(a_{i j}\right)$ with $a_{i j}=1 /(i+j)(i, j=1,2,3,4)$ is presented in Table 1. The first row is the result of six steps of $Q R$ i.e. the diagonal of R_{6}. The successive steps do not change the result. The second row gives the result of $A Q$ i.e. the diagonal of R_{6}. It slightly changes its values in the successive steps. The third row gives the exact (rounded to seven decimal digits) values obtained by a longer double precision calculation. As it may be seen about one decimal digit more is obtained by $A Q$ and it looks typical result for an ill-conditioned matrix as A is. The important thing in this example is that the $Q R$ method is not able to improve its result in the following steps while the method $A Q$ is.

Table 1

$Q R$:				
$1.75191967 E+00$	3.42929548 E-01	$3.57418163 E-02$	2.53089077 E-03	1.28749614E-04
4.72968925E-06	$1.22896782 E-07$	$2.147377863 E-09$	$2.26187110 E-11$	$1.29858427 E-13$
$A Q$:				
$1.75191967 E+00$	$3.42929548 E-01$	$3.57418163 E-02$	2.53089077E-03	1.28749614E-04
4.72968929E-06	$1.22896764 E-07$	$2.14747605 E-09$	$2.26804441 E-11$	$1.01232353 E-13$
	$Q R 1.0885106630 E$	-09 $A Q-2.72127$	66573E-11	
	$Q R-1.4089724845$	-16 AQ-1.4098	24845E-16	
	QR 1.4861283420	-23 AQ 6.68757	5382E-24	
	QR -3.1183335447	-32 AQ-1.30673	2474E-31	
	QR $8.1300989227 E$	38 AQ 2.13891	3468 E-38	
,	QR 0.0000000000 E	$+00 \quad A Q 0.00000$	$0000 E+00$	
	$Q R 0.0000000000 E$	$+00 \quad A Q 0.00000$	$0000 E+00$	
	$Q R 0.0000000000 E$	$+00 \quad A Q 0.00000$	$0000 E+00$	
	$Q R 0.0000000000 E$	$+00 \quad A Q 0.00000$	$0000 E+00$	
	$Q R 0.0000000000 E$	$+00 \quad A Q 0.00000$	$0000 E+00$	

F. Maniakowski
$\operatorname{det}(A)=0.0000000000 E+00$

References.

[1] J. H. Wilkinson, The algebraic eigenvalue problem, Oxford, 1965

instytut matematyki UMK
Chopina 12/18
87-100 Toruń, Poland

