Problemy Matematyczne 11 (1989), 17 – 20

Another use of LR and QR decompositions

Feliks Maniakowski

The aim of this paper is to propose two methods, called AL and QL in the sequel, of solving of the eigenvalue problem of a given matrix A. The known LR and QR methods (see e.g. [1]) are not selfcorrecting in the following sense. Each of them constructs a sequence of matrices $A_1 =$ A, A_2, A_3, \ldots where A_{k+1} is defined by means of the decomposition of A_k into the product of a lower and an upper triangular matrices L_k , R_k :

(1)
$$\begin{aligned} A_k &= L_k R_k, \\ A_{k+1} &= R_k L_k \end{aligned}$$

for LR method and similarly

(2)
$$\begin{aligned} A_k &= Q_k R_k, \\ A_{k+1} &= R_k Q_k \end{aligned}$$

for QR method, with Q_k being a unitary matrix. In both processes the matrix A_{k+1} depends in fact on A_k only and not on A itself. Thus errors produced during the computation of A_k cannot be corrected in the successive steps. The methods we propose do not have such a defect.

Definition 1 AL method. Define $L_0 = I$ (identity matrix). For k = 0, 1, 2, ... let L_{k+1} , R_{k+1} be given by equalities (3) $AL_k = L_{k+1}R_{k+1}$,

where L_{k+1} and R_{k+1} are lower and upper matrices respectively, L_{k+1} having 1's on its diagonal.

Definition 2 AQ method. Define

$$Q_0 = I AQ_{k+1} = Q_{k+1}R_{k+1} (k = 0, 1, 2, ...)$$

where Q_{k+1} , is a unitary matrix and R_{k+1} is an upper triagular matrix.

Observe that if the sequences L_k , R_k (Q_k, R_k , respectively) converge and $L = \lim L_k$, $R = \lim R_k$, $Q = \lim Q_k$ then

$$AL = LR$$
 ($AQ = QR$, respectively)

i.e. the limit matrix R being similar to A, has the same eigenvalues as A has.

The applicability conditions are the same for both LR and AL methods (for QR and AQ, respectively) for any matrix A.

Theorem 3 The AL is applicable to a matrix A iff the LR is, i.e. for all k = 1, 2, 3, ... there exist matrices \overline{L}_k , \overline{R}_k such that

(4)
$$\overline{L}_0 = I, \ \overline{A}L_k = \overline{L}_{k+1}\overline{R}_{k+1}$$

iff there exist matrices L_k , R_k such that

(5)
$$A = L_1 R_1, \ L_{k+1} R_{k+1} = R_k L_k$$

Moreover, in this case the following equalities hold:

(6)
$$\overline{L}_k = L_1 L_2 \dots L_k, \overline{R}_k = R_k \ (k = 1, 2, 3, \dots)$$

(7)
$$L_k = L_{k-1}^{-1} L_k \ (k = 1, 2, 3, \ldots)$$

Proof. Let us assume that LR is applicable to a given matrix A. Then there exist matrices L_k , R_k satisfying (5). An easy induction on k shows that the matrices L_k defined by (6) satisfy the equality (4). Similarly one checks that converse implication holds. So the theorem follows.

Corollary 4 If the LR method is convergent, then the AL method provides the convergent sequence R_k and thus provides the eigenvalues of A. Conversely, if the AL method is convergent, then the LR is convergent.

Remark 5 It is easy to check that for the matrix $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ the LR method is convergent while AL is not because $L_k = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$.

We omit here analogous theorem and corollary dealing with the QR and AQ methods.

Numerical example 6

OR.

The result of applying of the AQ method o the matrix $A = (a_{ij})$ with $a_{ij} = 1/(i + j)$ (i, j = 1, 2, 3, 4) is presented in Table 1. The first row is the result of six steps of QR i.e. the diagonal of R_6 . The successive steps do not change the result. The second row gives the result of AQ i.e. the diagonal of R_6 . It slightly changes its values in the successive steps. The third row gives the exact (rounded to seven decimal digits) values obtained by a longer double precision calculation. As it may be seen about one decimal digit more is obtained by AQ and it looks typical result for an ill-conditioned matrix as A is. The important thing in this example is that the QR method is not able to improve its result in the following steps while the method AQ is.

Table 1

QR:				
1.75191967E + 00	3.42929548E-01	3.57418163E-02	2.53089077 E-03	1.28749614E-04
4.72968925 <i>E</i> -06	1.22896782 E-07	2.147377863E-09	2.26187110E-11	1.29858427 <i>E</i> -13
AQ:				
1.75191967E + 00	3.42929548E-01	3.57418163E-02	2.53089077 E-03	1.28749614 E-04
4.72968929E-06	1.22896764 E-07	2.14747605 E-09	2.26804441 E-11	1.01232353E-13
	$QR \ 1.0885106630E$	-09 AQ -2.7212	2766573 <i>E</i> -11	
	QR -1.40897248451	E-16 AQ - 1.4098	5724845 E-16	
	$QR \ 1.4861283420E$	$-23 AQ \; 6.68757$	775382E-24	
	QR -3.11833354471	E-32 AQ-1.30673	302474E-31	
	QR 8.1300989227E	-38 AQ 2.13891	153468 <i>E</i> -38	
	QR 0.000000000 E	$+00 AQ \ 0.00000$	000000E + 00	
	QR 0.000000000 E	$+00 AQ \ 0.00000$)00000 <i>E</i> +00	
	QR 0.000000000 E	$+00 AQ \ 0.00000$	000000E + 00	
	QR 0.000000000 E	$+00 AQ \ 0.00000$	000000E+00	
	QR 0.000000000E	$+00 AQ \ 0.00000$	000000E + 00	

F. Maniakowski

 $\det(A) = 0.000000000E + 00$

References.

[1] J. H. Wilkinson, The algebraic eigenvalue problem, Oxford, 1965

INSTYTUT MATEMATYKI UMK Chopina 12/18 87-100 Toruń, Poland

Received before 23.12.1988